ATMEGA16-16PU Atmel, ATMEGA16-16PU Datasheet - Page 194

IC AVR MCU 16K 16MHZ 5V 40DIP

ATMEGA16-16PU

Manufacturer Part Number
ATMEGA16-16PU
Description
IC AVR MCU 16K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA16-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
32
Interface Type
TWI/SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Processor Series
ATMEGA16x
Core
AVR8
Data Ram Size
1 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
JTAG/SPI/UART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin PDIP
Programmable Memory
16K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16-16PU
Manufacturer:
Atmel
Quantity:
140
194
ATmega16(L)
The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address ($00), otherwise it will ignore the general call address.
TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own Slave address or the general call
address. TWSTA and TWSTO must be written to zero.
When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own Slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own Slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 77. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state $B0).
If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State $C0 or state $C8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State $C8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).
While TWEA is zero, the TWI does not respond to its own Slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.
In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own Slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock will low during the wake up and
until the TWINT Flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.
Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.
TWCR
Value
TWINT
0
TWEA
1
TWSTA
0
TWSTO
0
TWWC
0
TWEN
1
0
2466J–AVR–10/04
TWIE
X

Related parts for ATMEGA16-16PU