ATMEGA16-16PU Atmel, ATMEGA16-16PU Datasheet - Page 255

IC AVR MCU 16K 16MHZ 5V 40DIP

ATMEGA16-16PU

Manufacturer Part Number
ATMEGA16-16PU
Description
IC AVR MCU 16K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA16-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
32
Interface Type
TWI/SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Processor Series
ATMEGA16x
Core
AVR8
Data Ram Size
1 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
JTAG/SPI/UART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin PDIP
Programmable Memory
16K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16-16PU
Manufacturer:
Atmel
Quantity:
140
Preventing Flash Corruption
Programming Time for Flash
when using SPM
2466J–AVR–10/04
During periods of low V
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied.
A Flash program corruption can be caused by two situations when the voltage is too low.
First, a regular write sequence to the Flash requires a minimum voltage to operate
correctly. Secondly, the CPU itself can execute instructions incorrectly, if the supply
voltage for executing instructions is too low.
Flash corruption can easily be avoided by following these design recommendations (one
is sufficient):
1. If there is no need for a Boot Loader update in the system, program the Boot
2. Keep the AVR RESET active (low) during periods of insufficient power supply
3. Keep the AVR core in Power-down Sleep mode during periods of low V
The Calibrated RC Oscillator is used to time Flash accesses. Table 99 shows the typical
programming time for Flash accesses from the CPU.
Table 99. SPM Programming Time.
Symbol
Flash write (Page Erase, Page
Write, and write Lock bits by SPM)
Loader Lock bits to prevent any Boot Loader software updates.
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if
the operating voltage matches the detection level. If not, an external low V
Reset Protection circuit can be used. If a reset occurs while a write operation is
in progress, the write operation will be completed provided that the power supply
voltage is sufficient.
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCR Register and thus the Flash from unintentional
writes.
CC,
the Flash program can be corrupted because the supply volt-
Min Programming Time
3.7 ms
ATmega16(L)
Max Programming Time
4.5 ms
CC
. This
CC
255

Related parts for ATMEGA16-16PU