ATMEGA16-16PU Atmel, ATMEGA16-16PU Datasheet - Page 106

IC AVR MCU 16K 16MHZ 5V 40DIP

ATMEGA16-16PU

Manufacturer Part Number
ATMEGA16-16PU
Description
IC AVR MCU 16K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA16-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
32
Interface Type
TWI/SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Processor Series
ATMEGA16x
Core
AVR8
Data Ram Size
1 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
JTAG/SPI/UART
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin PDIP
Programmable Memory
16K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16-16PU
Manufacturer:
Atmel
Quantity:
140
Timer/Counter Timing
Diagrams
106
ATmega16(L)
inverted PWM and an inverted PWM output can be generated by setting the COM1x1:0
to 3 (See Table on page 110). The actual OC1x value will only be visible on the port pin
if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is
generated by setting (or clearing) the OC1x Register at the compare match between
OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x
Register at compare match between OCR1x and TCNT1 when the counter decrements.
The PWM frequency for the output when using phase and frequency correct PWM can
be calculated by the following equation:
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).
The extreme values for the OCR1x Register represents special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCR1x is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.
The Timer/Counter is a synchronous design and the timer clock (clk
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set, and when the OCR1x Register is updated with the
OCR1x buffer value (only for modes utilizing double buffering). Figure 49 shows a timing
diagram for the setting of OCF1x.
Figure 49. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling
Figure 50 shows the same timing data, but with the prescaler enabled.
OCRnx
TCNTn
OCFnx
(clk
clk
clk
I/O
I/O
Tn
/1)
OCRnx - 1
f
OCnxPFCPWM
OCRnx
OCRnx Value
=
--------------------------- -
2 N TOP
f
clk_I/O
OCRnx + 1
T1
) is therefore
OCRnx + 2
2466J–AVR–10/04

Related parts for ATMEGA16-16PU