ATMEGA168-15AZ Atmel, ATMEGA168-15AZ Datasheet - Page 48

MCU AVR 16K FLASH 15MHZ 32-TQFP

ATMEGA168-15AZ

Manufacturer Part Number
ATMEGA168-15AZ
Description
MCU AVR 16K FLASH 15MHZ 32-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA168-15AZ

Package / Case
32-TQFP, 32-VQFP
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Number Of I /o
23
Eeprom Size
512 x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
1K x 8
Program Memory Size
16KB (16K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Connectivity
I²C, SPI, UART/USART
Core Size
8-Bit
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Interface Type
2-Wire/USART/Serial
Total Internal Ram Size
1KB
# I/os (max)
23
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
32
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA168-15AZ
Manufacturer:
Atmel
Quantity:
10 000
48
ATmega48/88/168 Automotive
In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.
The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:
The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.
1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE)
2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
and WDE. A logic one must be written to WDE regardless of the previous value of the
WDE bit.
desired, but with the WDCE bit cleared. This must be done in one operation.
7530I–AVR–02/10

Related parts for ATMEGA168-15AZ