ATMEGA168-15AZ Atmel, ATMEGA168-15AZ Datasheet - Page 26

MCU AVR 16K FLASH 15MHZ 32-TQFP

ATMEGA168-15AZ

Manufacturer Part Number
ATMEGA168-15AZ
Description
MCU AVR 16K FLASH 15MHZ 32-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA168-15AZ

Package / Case
32-TQFP, 32-VQFP
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Number Of I /o
23
Eeprom Size
512 x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
1K x 8
Program Memory Size
16KB (16K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Connectivity
I²C, SPI, UART/USART
Core Size
8-Bit
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Interface Type
2-Wire/USART/Serial
Total Internal Ram Size
1KB
# I/os (max)
23
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
32
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA168-15AZ
Manufacturer:
Atmel
Quantity:
10 000
6.3
26
Low Power Crystal Oscillator
ATmega48/88/168 Automotive
Table 6-2.
Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum V
delay will not monitor the actual voltage and it will be required to select a delay longer than the
V
used. A BOD circuit will ensure sufficient V
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.
The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.
The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, V
assumed to be at a sufficient level and only the start-up time is included.
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be
configured for use as an On-chip Oscillator, as shown in
ceramic resonator may be used.
This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and
may be more susceptible to noise in noisy environments. In these cases, refer to the
Crystal Oscillator” on page
C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in
the manufacturer should be used.
CC
rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
Typ Time-out (V
4.1 ms
65 ms
0 ms
Number of Watchdog Oscillator Cycles
CC
= 5.0V)
28.
Table
6-3. For ceramic resonators, the capacitor values given by
Typ Time-out (V
CC
before it releases the reset, and the time-out delay
4.3 ms
69 ms
0 ms
CC
= 3.0V)
Figure
6-2. Either a quartz crystal or a
Number of Cycles
4K (4,096)
8K (8,192)
0
7530I–AVR–02/10
“Full Swing
CC
. The
CC
is

Related parts for ATMEGA168-15AZ