MCF5282CVM66 Freescale, MCF5282CVM66 Datasheet - Page 79

MCF5282CVM66

Manufacturer Part Number
MCF5282CVM66
Description
Manufacturer
Freescale
Datasheet

Specifications of MCF5282CVM66

Cpu Family
MCF528x
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
66MHz
Interface Type
CAN/I2C/QSPI/UART
Total Internal Ram Size
64KB
# I/os (max)
150
Number Of Timers - General Purpose
12
Operating Supply Voltage (typ)
3.3V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
256
Package Type
MA-BGA
Program Memory Type
Flash
Program Memory Size
512KB
Lead Free Status / RoHS Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF5282CVM66
Manufacturer:
FREESCAL
Quantity:
152
Part Number:
MCF5282CVM66
Manufacturer:
FREESCALE
Quantity:
1 002
Part Number:
MCF5282CVM66
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MCF5282CVM66
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
MCF5282CVM66J
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 3
Enhanced Multiply-Accumulate Unit (EMAC)
3.1
This chapter describes the functionality, microarchitecture, and performance of the enhanced
multiply-accumulate (EMAC) unit in the ColdFire family of processors.
3.1.1
The EMAC design provides a set of DSP operations that can improve the performance of embedded code
while supporting the integer multiply instructions of the baseline ColdFire architecture.
The MAC provides functionality in three related areas:
The ColdFire family supports two MAC implementations with different performance levels and
capabilities. The original MAC features a three-stage execution pipeline optimized for 16-bit operands,
with a 16x16 multiply array and a single 32-bit accumulator. The EMAC features a four-stage pipeline
optimized for 32-bit operands, with a fully pipelined 32 × 32 multiply array and four 48-bit accumulators.
The first ColdFire MAC supported signed and unsigned integer operands and was optimized for 16x16
operations, such as those found in applications including servo control and image compression. As
ColdFire-based systems proliferated, the desire for more precision on input operands increased. The result
was an improved ColdFire MAC with user-programmable control to optionally enable use of fractional
input operands.
EMAC improvements target three primary areas:
The three areas of functionality are addressed in detail in following sections. The logic required to support
this functionality is contained in a MAC module
Freescale Semiconductor
1. Signed and unsigned integer multiplication
2. Multiply-accumulate operations supporting signed and unsigned integer operands as well as
3. Miscellaneous register operations
signed, fixed-point, and fractional operands
Improved performance of 32 × 32 multiply operation.
Addition of three more accumulators to minimize MAC pipeline stalls caused by exchanges
between the accumulator and the pipeline’s general-purpose registers
A 48-bit accumulation data path to allow a 40-bit product, plus 8 extension bits increase the
dynamic number range when implementing signal processing algorithms
Introduction
Overview
(Figure
3-1).
3-1

Related parts for MCF5282CVM66