ATTINY167-15XD Atmel, ATTINY167-15XD Datasheet - Page 207

MCU AVR 16K FLASH 15MHZ 20-TSSOP

ATTINY167-15XD

Manufacturer Part Number
ATTINY167-15XD
Description
MCU AVR 16K FLASH 15MHZ 20-TSSOP
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheet

Specifications of ATTINY167-15XD

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, LIN, SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
16
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 150°C
Package / Case
20-TSSOP
Processor Series
ATTINY1x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
For Use With
ATSTK600-SOIC - STK600 SOCKET/ADAPTER FOR SOIC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
17.11.2
7728G–AVR–06/10
ADCSRA – ADC Control and Status Register A
• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.
• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running
mode, write this bit to one to start the first conversion. The first conversion after ADSC has
been written after the ADC has been enabled, or if ADSC is written at the same time as the
ADC is enabled, will take 25 ADC clock cycles instead of the normal 13. This first conversion
performs initialization of the ADC.
ADSC will read as one as long as a conversion is in progress. When the conversion is com-
plete, it returns to zero. Writing zero to this bit has no effect.
• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a
conversion on a positive edge of the selected trigger signal. The trigger source is selected by
setting the ADC Trigger Select bits, ADTS in ADCSRB.
• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a
Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also applies if the
SBI and CBI instructions are used.
• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete
Interrupt is activated.
• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input
clock to the ADC.
Table 17-6.
Bit
Read/Write
Initial Value
ADPS2
0
0
0
0
ADC Prescaler Selections
ADEN
R/W
7
0
ADPS1
ADSC
0
0
1
1
R/W
6
0
ADATE
R/W
5
0
ADPS0
0
1
0
1
ADIF
R/W
4
0
ADIE
R/W
3
0
ATtiny87/ATtiny167
ADPS2
R/W
2
0
Division Factor
ADPS1
R/W
1
0
2
2
4
8
ADPS0
R/W
0
0
ADCSRA
207

Related parts for ATTINY167-15XD