ATA6613P-PLQW Atmel, ATA6613P-PLQW Datasheet - Page 150

MCU W/LIN TXRX REG WTCHDG 48-QFN

ATA6613P-PLQW

Manufacturer Part Number
ATA6613P-PLQW
Description
MCU W/LIN TXRX REG WTCHDG 48-QFN
Manufacturer
Atmel
Series
AVR® ATA66 LIN-SBCr
Datasheet

Specifications of ATA6613P-PLQW

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
48-QFN Exposed Pad
Processor Series
ATA6x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
23
Number Of Timers
3
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATA6613P-PLQW
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATA6613P-PLQW
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
150
Atmel ATA6612/ATA6613
Figure 6-47. Phase Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM.
When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set
accordingly at the same timer clock cycle as the OCR1x Registers are updated with the dou-
ble buffer value (at TOP). The Interrupt Flags can be used to generate an interrupt each time
the counter reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x
Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP.
This implies that the length of the falling slope is determined by the previous TOP value, while
the length of the rising slope is determined by the new TOP value. When these two values dif-
fer the two slopes of the period will differ in length. The difference in length gives the
unsymmetrical result on the output.
It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.
In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to three. The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1 when the counter increments, and clearing
(or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the coun-
ter decrements.
TCNTn
OCnx
OCnx
Period
1
2
3
Figure 6-47
4
OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
TOVn Interrupt Flag Set
(Interrupt on Bottom)
illustrates, changing the
(COMnx1:0 = 2)
(COMnx1:0 = 3)
9111H–AUTO–01/11

Related parts for ATA6613P-PLQW