PIC18F86J50T-I/PT Microchip Technology, PIC18F86J50T-I/PT Datasheet - Page 47

no-image

PIC18F86J50T-I/PT

Manufacturer Part Number
PIC18F86J50T-I/PT
Description
IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,64PIN,PLASTIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr
Datasheets

Specifications of PIC18F86J50T-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
65
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3904 B
Interface Type
I2C, MSSP, SPI, EUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
65
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM183022, DM183032
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 12 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC162087 - HEADER MPLAB ICD2 18F87J50 68/84MA180021 - MODULE PLUG-IN 18F87J50 FS USBAC164328 - MODULE SKT FOR 80TQFP
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
PIC18F86J50T-I/PTTR

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86J50T-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
3.0
The PIC18F87J10 family devices provide the ability to
manage power consumption by simply managing clock-
ing to the CPU and the peripherals. In general, a lower
clock frequency and a reduction in the number of circuits
being clocked constitutes lower consumed power. For
the sake of managing power in an application, there are
three primary modes of operation:
• Run mode
• Idle mode
• Sleep mode
These modes define which portions of the device are
clocked and at what speed. The Run and Idle modes
may use any of the three available clock sources
(primary, secondary or internal oscillator block); the
Sleep mode does not use a clock source.
The
power-saving features offered on previous PIC
devices. One is the clock switching feature, offered in
other PIC18 devices, allowing the controller to use the
Timer1 oscillator in place of the primary oscillator. Also
included is the Sleep mode, offered by all PIC devices,
where all device clocks are stopped.
3.1
Selecting a power-managed mode requires two
decisions: if the CPU is to be clocked or not and which
clock source is to be used. The IDLEN bit
(OSCCON<7>) controls CPU clocking, while the
SCS1:SCS0 bits (OSCCON<1:0>) select the clock
source. The individual modes, bit settings, clock
sources and affected modules are summarized in
Table 3-1.
TABLE 3-1:
© 2009 Microchip Technology Inc.
Sleep
PRI_RUN
SEC_RUN
RC_RUN
PRI_IDLE
SEC_IDLE
RC_IDLE
Note 1:
Mode
power-managed
POWER-MANAGED MODES
Selecting Power-Managed Modes
IDLEN reflects its value when the SLEEP instruction is executed.
IDLEN
N/A
N/A
N/A
POWER-MANAGED MODES
0
1
1
1
OSCCON<7,1:0>
(1)
modes
SCS1:SCS0
N/A
00
01
11
00
01
11
include
Clocked
Clocked
Clocked
CPU
several
Module Clocking
Off
Off
Off
Off
®
Peripherals
Clocked
Clocked
Clocked
Clocked
Clocked
Clocked
Off
PIC18F87J50 FAMILY
3.1.1
The SCS1:SCS0 bits allow the selection of one of three
clock sources for power-managed modes. They are:
• The primary clock source, as defined by the
• The Timer1 clock (provided by the secondary
• The postscaled internal clock (derived from the
3.1.2
Switching from one power-managed mode to another
begins by loading the OSCCON register. The
SCS1:SCS0 bits select the clock source and determine
which Run or Idle mode is to be used. Changing these
bits causes an immediate switch to the new clock
source, assuming that it is running. The switch may
also be subject to clock transition delays. These are
discussed in Section 3.1.3 “Clock Transitions and
Status Indicators” and subsequent sections.
Entry to the power-managed Idle or Sleep modes is
triggered by the execution of a SLEEP instruction. The
actual mode that results depends on the status of the
IDLEN bit.
Depending on the current mode and the mode being
switched to, a change to a power-managed mode does
not always require setting all of these bits. Many
transitions may be done by changing the oscillator
select bits, or changing the IDLEN bit, prior to issuing a
SLEEP instruction. If the IDLEN bit is already
configured correctly, it may only be necessary to
perform a SLEEP instruction to switch to the desired
mode.
FOSC2:FOSC0 Configuration bits
oscillator)
internal oscillator block)
None – All clocks are disabled
Primary clock source (defined by FOSC2:FOSC0);
this is the normal full-power execution mode
Secondary – Timer1 oscillator
Postscaled internal clock
Primary clock source (defined by FOSC2:FOSC0)
Secondary – Timer1 oscillator
Postscaled internal clock
Available Clock and Oscillator Source
CLOCK SOURCES
ENTERING POWER-MANAGED
MODES
DS39775C-page 47

Related parts for PIC18F86J50T-I/PT