MC9S12DT256MPVE Freescale Semiconductor, MC9S12DT256MPVE Datasheet - Page 634

IC MCU 256K FLASH 25MHZ 112-LQFP

MC9S12DT256MPVE

Manufacturer Part Number
MC9S12DT256MPVE
Description
IC MCU 256K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12DT256MPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
PWM, WDT
Number Of I /o
91
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
12K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.25 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
112-LQFP
Processor Series
S12D
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
12 KB
Interface Type
CAN/I2C/SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
91
Number Of Timers
1
Operating Supply Voltage
5 V to 2.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68KIT912DP256
Minimum Operating Temperature
- 40 C
On-chip Adc
2 (8-ch x 10-bit)
No. Of I/o's
91
Eeprom Memory Size
4KB
Ram Memory Size
12KB
Cpu Speed
25MHz
No. Of Timers
1
No. Of Pwm Channels
8
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Part Number:
MC9S12DT256MPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Chapter 17 Memory Mapping Control (S12XMMCV2)
Expansion of the BDM Local Address Map
PPAGE, RPAGE, and EPAGE registers are also used for the expansion of the BDM local address to the
global address. These registers can be read and written by the BDM.
The BDM expansion scheme is the same as the CPU expansion scheme.
17.4.2.2
CPU Global Addresses Based on the Global Page
The seven global page index bits allow access to the full 8 Mbyte address map that can be accessed with
23 address bits. This provides an alternative way to access all of the various pages of FLASH, RAM and
EEPROM as well as additional external memory.
The GPAGE Register is used only when the CPU is executing a global instruction (see
“Global Page Index Register
the CPU local address [15:0] with the GPAGE register [22:16] (see
BDM Global Addresses Based on the Global Page
The seven BDMGPR Global Page index bits allow access to the full 8 Mbyte address map that can be
accessed with 23 address bits. This provides an alternative way to access all of the various pages of
FLASH, RAM and EEPROM as well as additional external memory.
The BDM global page index register (BDMGPR) is used only in the case the CPU is executing a firmware
command which uses a global instruction (like GLDD, GSTD) or by a BDM hardware command (like
WRITE_W, WRITE_BYTE, READ_W, READ_BYTE). See the BDM Block Guide for further details.
The generated global address is a result of concatenation of the BDM local address with the BDMGPR
register [22:16] in the case of a hardware command or concatenation of the CPU local address and the
BDMGPR register [22:16] in the case of a firmware command (see
634
Global Addresses Based on the Global Page
(GPAGE)”). The generated global address is the result of concatenation of
MC9S12XDP512 Data Sheet, Rev. 2.21
Figure
Figure
1-7).
1-22).
Freescale Semiconductor
Section 1.3.2.3,

Related parts for MC9S12DT256MPVE