MC9S12DT256MPVE Freescale Semiconductor, MC9S12DT256MPVE Datasheet - Page 586

IC MCU 256K FLASH 25MHZ 112-LQFP

MC9S12DT256MPVE

Manufacturer Part Number
MC9S12DT256MPVE
Description
IC MCU 256K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12DT256MPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
PWM, WDT
Number Of I /o
91
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
12K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.25 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
112-LQFP
Processor Series
S12D
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
12 KB
Interface Type
CAN/I2C/SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
91
Number Of Timers
1
Operating Supply Voltage
5 V to 2.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68KIT912DP256
Minimum Operating Temperature
- 40 C
On-chip Adc
2 (8-ch x 10-bit)
No. Of I/o's
91
Eeprom Memory Size
4KB
Ram Memory Size
12KB
Cpu Speed
25MHz
No. Of Timers
1
No. Of Pwm Channels
8
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Part Number:
MC9S12DT256MPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Chapter 15 Background Debug Module (S12XBDMV2)
Figure 15-10
target, there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of
the bit time as perceived by the target. The host initiates the bit time but the target finishes it. Since the
target wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly
drives it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after
starting the bit time.
15.4.7
BDM commands that require CPU execution are ultimately treated at the MCU bus rate. Since the BDM
clock source can be asynchronously related to the bus frequency, when CLKSW = 0, it is very helpful to
provide a handshake protocol in which the host could determine when an issued command is executed by
the CPU. The alternative is to always wait the amount of time equal to the appropriate number of cycles at
the slowest possible rate the clock could be running. This sub-section will describe the hardware
handshake protocol.
The hardware handshake protocol signals to the host controller when an issued command was successfully
executed by the target. This protocol is implemented by a 16 serial clock cycle low pulse followed by a
brief speedup pulse in the BKGD pin. This pulse is generated by the target MCU when a command, issued
by the host, has been successfully executed (see
After the ACK pulse has finished: the host can start the bit retrieval if the last issued command was a read
command, or start a new command if the last command was a write command or a control command
(BACKGROUND, GO, GO_UNTIL or TRACE1). The ACK pulse is not issued earlier than 32 serial clock
cycles after the BDM command was issued. The end of the BDM command is assumed to be the 16th tick
of the last bit. This minimum delay assures enough time for the host to perceive the ACK pulse. Note also
that, there is no upper limit for the delay between the command and the related ACK pulse, since the
command execution depends upon the CPU bus frequency, which in some cases could be very slow
586
Start of Bit Time
Speedup Pulse
Target System
(Target MCU)
BDM Clock
BKGD Pin
BKGD Pin
Perceived
Drive and
Drive to
Host
Serial Interface Hardware Handshake Protocol
shows the host receiving a logic 0 from the target. Since the host is asynchronous to the
Figure 15-10. BDM Target-to-Host Serial Bit Timing (Logic 0)
MC9S12XDP512 Data Sheet, Rev. 2.21
10 Cycles
10 Cycles
Figure
15-11). This pulse is referred to as the ACK pulse.
High-Impedance
Host Samples
BKGD Pin
Speedup Pulse
Freescale Semiconductor
Next Bit
Earliest
Start of

Related parts for MC9S12DT256MPVE