S912XET512J3VALR Freescale Semiconductor, S912XET512J3VALR Datasheet - Page 644

no-image

S912XET512J3VALR

Manufacturer Part Number
S912XET512J3VALR
Description
16-bit Microcontrollers - MCU 16 BIT,512K FLASH
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S912XET512J3VALR

Rohs
yes
Core
HCS12X
Processor Series
MC9S12XE
Data Bus Width
16 bit
Maximum Clock Frequency
50 MHz
Program Memory Size
512 KB
Data Ram Size
32 KB
On-chip Adc
Yes
Operating Supply Voltage
3.13 V to 5.5 V
Operating Temperature Range
- 40 C to + 105 C
Package / Case
LQFP-112
Mounting Style
SMD/SMT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S912XET512J3VALR
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 16 Freescale’s Scalable Controller Area Network (S12MSCANV3)
generates a receive interrupt
handler must read the received message from the RxFG and then reset the RXF flag to acknowledge the
interrupt and to release the foreground buffer. A new message, which can follow immediately after the IFS
field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid
message in its RxBG (wrong identifier, transmission errors, etc.) the actual contents of the buffer will be
over-written by the next message. The buffer will then not be shifted into the FIFO.
When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the
background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt,
or acknowledge its own messages on the CAN bus. The exception to this rule is in loopback mode (see
Section 16.3.2.2, “MSCAN Control Register 1
exactly like all other incoming messages. The MSCAN receives its own transmitted messages in the event
that it loses arbitration. If arbitration is lost, the MSCAN must be prepared to become a receiver.
An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly
received messages with accepted identifiers and another message is correctly received from the CAN bus
with an accepted identifier. The latter message is discarded and an error interrupt with overrun indication
is generated if enabled (see
messages while the receiver FIFO is being filled, but all incoming messages are discarded. As soon as a
receive buffer in the FIFO is available again, new valid messages will be accepted.
16.4.3
The MSCAN identifier acceptance registers (see
Control Register
(ID[10:0] or ID[28:0]). Any of these bits can be marked ‘don’t care’ in the MSCAN identifier mask
registers (see
A filter hit is indicated to the application software by a set receive buffer full flag (RXF = 1) and three bits
in the CANIDAC register (see
(CANIDAC)”). These identifier hit flags (IDHIT[2:0]) clearly identify the filter section that caused the
acceptance. They simplify the application software’s task to identify the cause of the receiver interrupt. If
more than one hit occurs (two or more filters match), the lower hit has priority.
A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU
interrupt loading. The filter is programmable to operate in four different modes:
1. The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.
644
Two identifier acceptance filters, each to be applied to:
— The full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame:
— The 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages.
– Remote transmission request (RTR)
– Identifier extension (IDE)
– Substitute remote request (SRR)
This mode implements two filters for a full length CAN 2.0B compliant extended identifier.
Although this mode can be used for standard identifiers, it is recommended to use the four or
eight identifier acceptance filters.
Identifier Acceptance Filter
Section 16.3.2.18, “MSCAN Identifier Mask Registers
(CANIDAC)”) define the acceptable patterns of the standard or extended identifier
Section 16.4.7.5, “Error
1
(see
Section 16.3.2.12, “MSCAN Identifier Acceptance Control Register
MC9S12XE-Family Reference Manual Rev. 1.25
Section 16.4.7.3, “Receive
(CANCTL1)”) where the MSCAN treats its own messages
Section 16.3.2.12, “MSCAN Identifier Acceptance
Interrupt”). The MSCAN remains able to transmit
Interrupt”) to the CPU. The user’s receive
(CANIDMR0–CANIDMR7)”).
Freescale Semiconductor

Related parts for S912XET512J3VALR