ATMEGA128-16MN Atmel, ATMEGA128-16MN Datasheet - Page 208

MCU AVR 128KB FLASH 16MHZ 64QFN

ATMEGA128-16MN

Manufacturer Part Number
ATMEGA128-16MN
Description
MCU AVR 128KB FLASH 16MHZ 64QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16MN

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Figure 95. Interfacing the Application to the TWI in a Typical Transmission
208
Hardware
TWI bus
Action
TWI
ATmega128
1. Application
writes to TWCR
to initiate
transmission of
START
START
2. TWINT set.
Status code indicates
START condition sent
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.
1. The first step in a TWI transmission is to transmit a START condition. This is done by
2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
3. The application software should now examine the value of TWSR, to make sure that the
4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and
5. The application software should now examine the value of TWSR, to make sure that the
3. Check TWSR to see if START
was sent. Application loads
SLA+W into TWDR, and loads
appropriate control signals into
TWCR, making sure that TWINT
is written to one, and TWSTA is
written to zero.
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a slave acknowledged the packet or
not.
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
SLA+W
4. TWINT set.
Status code indicates
SLA+W sendt, ACK
received
A
5. Check TWSR to see if SLA+W
was sent and ACK received.
Application loads data into TWDR,
and loads appropriate control signals
into TWCR, making sure that TWINT
is written to one.
Data
6. TWINT set.
Status code indicates
data sent, ACK received
A
7. Check TWSR to see if data
was sent and ACK received.
Application loads appropriate
control signals to send STOP
into TWCR, making sure that
TWINT is written to one
STOP
2467V–AVR–02/11
TWINT set
Indicates

Related parts for ATMEGA128-16MN