ATMEGA128-16MN Atmel, ATMEGA128-16MN Datasheet - Page 173

MCU AVR 128KB FLASH 16MHZ 64QFN

ATMEGA128-16MN

Manufacturer Part Number
ATMEGA128-16MN
Description
MCU AVR 128KB FLASH 16MHZ 64QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16MN

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Internal Clock
Generation – The
Baud Rate Generator
Double Speed
Operation (U2X)
2467V–AVR–02/11
Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to
The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRR value each time the counter has counted down to zero or when
the UBRRL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fosc/(UBRR+1)). The transmitter divides the
baud rate generator clock output by 2, 8, or 16 depending on mode. The baud rate generator
output is used directly by the receiver’s clock and data recovery units. However, the recovery
units use a state machine that uses 2, 8, or 16 states depending on mode set by the state of the
UMSEL, U2X and DDR_XCK bits.
Table 74
the UBRR value for each mode of operation using an internally generated clock source.
Table 74. Equations for Calculating Baud Rate Register Setting
Note:
Some examples of UBRR values for some system clock frequencies are found in
page
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect
for the asynchronous operation. Set this bit to zero when using synchronous operation.
Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.
Operating Mode
Asynchronous Normal Mode
(U2X = 0)
Asynchronous Double Speed
Mode (U2X = 1)
Synchronous Master Mode
txclk
rxclk
xcki
xcko
fosc
BAUD Baud rate (in bits per second, bps)
f
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)
OSC
193).
1. The baud rate is defined to be the transfer rate in bit per second (bps).
contains equations for calculating the baud rate (in bits per second) and for calculating
Transmitter clock. (Internal Signal)
Receiver base clock. (Internal Signal)
Input from XCK pin (internal Signal). Used for synchronous slave operation.
Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.
XTAL pin frequency (System Clock).
System Oscillator clock frequency
BAUD
BAUD
BAUD
Equation for Calculating
Baud Rate
=
=
=
-------------------------------------- -
16 UBRR
---------------------------------- -
8 UBRR
---------------------------------- -
2 UBRR
(
(
(
f
f
f
Figure
OSC
OSC
OSC
(1)
+
+
+
1
1
1
80.
)
)
)
Equation for Calculating
UBRR
UBRR
UBRR
UBRR Value
=
=
=
----------------------- - 1
16BAUD
ATmega128
------------------- - 1
8BAUD
------------------- - 1
2BAUD
f
f
f
OSC
OSC
OSC
Table 82
(see
173

Related parts for ATMEGA128-16MN