ATMEGA128-16MN Atmel, ATMEGA128-16MN Datasheet - Page 197

MCU AVR 128KB FLASH 16MHZ 64QFN

ATMEGA128-16MN

Manufacturer Part Number
ATMEGA128-16MN
Description
MCU AVR 128KB FLASH 16MHZ 64QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128-16MN

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK501 - ADAPTER KIT FOR 64PIN AVR MCUATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Two-wire Serial
Interface
Features
Two-wire Serial
Interface Bus
Definition
TWI Terminology
Electrical
Interconnection
2467V–AVR–02/11
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.
Figure 86. TWI Bus Interconnection
The following definitions are frequently encountered in this section.
Table 86. TWI Terminology
As depicted in
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
Term
Master
Slave
Transmitter
Receiver
Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
Both Master and Slave Operation Supported
Device can Operate as Transmitter or Receiver
7-bit Address Space allows up to 128 Different Slave Addresses
Multi-master Arbitration Support
Up to 400kHz Data Transfer Speed
Slew-rate Limited Output Drivers
Noise Suppression Circuitry Rejects Spikes on Bus Lines
Fully Programmable Slave Address with General Call Support
Address Recognition Causes Wake-up when AVR is in Sleep Mode
SDA
SCL
Description
The device that initiates and terminates a transmission. The master also
generates the SCL clock
The device addressed by a master
The device placing data on the bus
The device reading data from the bus
Figure
Device 1
86, both bus lines are connected to the positive supply voltage through
Device 2
Device 3
........
Device n
V
CC
ATmega128
R1
R2
197

Related parts for ATMEGA128-16MN