PIC18F4431-E/P Microchip Technology, PIC18F4431-E/P Datasheet - Page 44

IC MCU FLASH 8KX16 40DIP

PIC18F4431-E/P

Manufacturer Part Number
PIC18F4431-E/P
Description
IC MCU FLASH 8KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4431-E/P

Core Size
8-Bit
Program Memory Size
16KB (8K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number Of I /o
36
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
256Byte
Ram Memory Size
768Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART, I2C, SPI, SSP
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
36
Number Of Timers
1 x 8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
9 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LDACICE0206 - ADAPTER MPLABICE 40P 600 MIL
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4431-E/P
Manufacturer:
MICROCHIP
Quantity:
1 785
Part Number:
PIC18F4431-E/P
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC18F4431-E/PT
Manufacturer:
JOHANSON
Quantity:
24 000
Part Number:
PIC18F4431-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F2331/2431/4331/4431
4.4.1
This mode is unique among the three low-power Idle
modes, in that it does not disable the primary device
clock. For timing-sensitive applications, this allows for
the fastest resumption of device operation with its more
accurate primary clock source, since the clock source
does not have to “warm-up” or transition from another
oscillator.
PRI_IDLE mode is entered from PRI_RUN mode by
setting the IDLEN bit and executing a SLEEP instruc-
tion. If the device is in another Run mode, set IDLEN
first, then clear the SCS bits and execute SLEEP.
Although the CPU is disabled, the peripherals continue
to be clocked from the primary clock source specified
by the FOSC<3:0> Configuration bits. The OSTS bit
remains set (see
When a wake event occurs, the CPU is clocked from the
primary clock source. A delay of interval, T
required between the wake event and when code
execution starts. This is required to allow the CPU to
become ready to execute instructions. After the wake-
up, the OSTS bit remains set. The IDLEN and SCS bits
are not affected by the wake-up (see
4.4.2
In SEC_IDLE mode, the CPU is disabled but the
peripherals continue to be clocked from the Timer1
oscillator. This mode is entered from SEC_RUN by
FIGURE 4-7:
FIGURE 4-8:
DS39616D-page 44
CPU Clock
Peripheral
Program
CPU Clock
Counter
Peripheral
OSC1
Program
Clock
Counter
OSC1
Clock
PRI_IDLE MODE
SEC_IDLE MODE
Figure
Q1
Q1
TRANSITION TIMING FOR ENTRY TO IDLE MODE
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE
4-7).
Q2
Wake Event
PC
Q3
Figure
T
CSD
4-8).
Q4
CSD
, is
Q1
PC
setting the IDLEN bit and executing a SLEEP
instruction. If the device is in another Run mode, set the
IDLEN bit first, then set the SCS<1:0> bits to ‘01’ and
execute SLEEP. When the clock source is switched to
the Timer1 oscillator, the primary oscillator is shut down,
the OSTS bit is cleared and the T1RUN bit is set.
When a wake event occurs, the peripherals continue to
be clocked from the Timer1 oscillator. After an interval
of T
cuting code being clocked by the Timer1 oscillator. The
IDLEN and SCS bits are not affected by the wake-up;
the Timer1 oscillator continues to run (see
Note:
CSD
, following the wake event, the CPU begins exe-
The Timer1 oscillator should already be
running prior to entering SEC_IDLE
mode. If the T1OSCEN bit is not set when
the SLEEP instruction is executed, the
SLEEP instruction will be ignored and
entry to SEC_IDLE mode will not occur. If
the Timer1 oscillator is enabled but not yet
running, peripheral clocks will be delayed
until the oscillator has started. In such
situations, initial oscillator operation is far
from stable and unpredictable operation
may result.
PC + 2
Q2
 2010 Microchip Technology Inc.
Q3
Figure
Q4
4-8).

Related parts for PIC18F4431-E/P