PIC18F4431-E/P Microchip Technology, PIC18F4431-E/P Datasheet - Page 212

IC MCU FLASH 8KX16 40DIP

PIC18F4431-E/P

Manufacturer Part Number
PIC18F4431-E/P
Description
IC MCU FLASH 8KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4431-E/P

Core Size
8-Bit
Program Memory Size
16KB (8K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number Of I /o
36
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
256Byte
Ram Memory Size
768Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART, I2C, SPI, SSP
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
36
Number Of Timers
1 x 8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
9 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LDACICE0206 - ADAPTER MPLABICE 40P 600 MIL
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4431-E/P
Manufacturer:
MICROCHIP
Quantity:
1 785
Part Number:
PIC18F4431-E/P
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC18F4431-E/PT
Manufacturer:
JOHANSON
Quantity:
24 000
Part Number:
PIC18F4431-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F2331/2431/4331/4431
19.3
The SSP module, in I
functions except general call support and provides
interrupts on Start and Stop bits in hardware to facilitate
firmware implementations of the master functions. The
SSP
specifications, as well as 7-bit and 10-bit addressing.
Two pins are used for data transfer. These are the SCK/
SCL pin, which is the clock (SCL), and the SDI/SDA
pin, which is the data (SDA). The user must configure
these pins as inputs or outputs through the
TRISC<5:4> or TRISD<3:2> bits.
The SSP module functions are enabled by setting SSP
Enable bit SSPEN (SSPCON<5>).
FIGURE 19-5:
The SSP module has five registers for I
These are the:
• SSP Control Register (SSPCON)
• SSP Status Register (SSPSTAT)
• Serial Receive/Transmit Buffer (SSPBUF)
• SSP Shift Register (SSPSR) – Not directly
• SSP Address Register (SSPADD)
DS39616D-page 212
SCK/SCL
SDI/SDA
Note 1: When SSPMX = 1 in CONFIG3H:
accessible
module
SSP I
(1)
(1)
SCK/SCL is multiplexed to the RC5 pin, SDA/
SDI is multiplexed to the RC4 pin and SDO is
multiplexed to pin, RC7.
When SSPMX = 0 in CONFIG3H:
SCK/SCL is multiplexed to the RD3 pin, SDA/
SDI is multiplexed to the RD2 pin and SDO is
multiplexed to pin, RD1.
Read
2
Clock
Shift
implements
C Operation
MSb
2
C mode, fully implements all slave
SSP BLOCK DIAGRAM
(I
Stop bit Detect
SSPADD Reg
SSPBUF Reg
Match Detect
SSPSR Reg
2
C™ MODE)
Start and
the
LSb
Write
standard
Internal
Data Bus
Set, Reset
S, P bits
(SSPSTAT Reg)
2
Addr Match
C operation.
mode
The SSPCON register allows control of the I
tion. Four mode selection bits (SSPCON<3:0>) allow
one of the following I
• I
• I
• I
• I
• I
Selection of any I
forces the SCL and SDA pins to be open-drain,
provided these pins are programmed as inputs by
setting the appropriate TRISC or TRISD bits. Pull-up
resistors must be provided externally to the SCL and
SDA pins for proper operation of the I
Additional information on SSP I
found in the “PIC
Manual” (DS33023).
19.3.1
In Slave mode, the SCL and SDA pins must be config-
ured as inputs (TRISC<5:4> or TRISD<3:2> set). The
SSP module will override the input state with the output
data when required (slave-transmitter).
When an address is matched, or the data transfer after
an address match is received, the hardware automati-
cally will generate the Acknowledge (ACK) pulse and
then load the SSPBUF register with the received value
currently in the SSPSR register.
There are certain conditions that will cause the SSP
module not to give this ACK pulse. They include (either
or both):
a)
b)
In this case, the SSPSR register value is not loaded
into the SSPBUF, but bit, SSPIF (PIR1<3>), is set.
Table 19-2
byte is received, given the status of bits BF and
SSPOV. The shaded cells show the condition where
user software did not properly clear the overflow
condition. Flag bit, BF, is cleared by reading the
SSPBUF register, while bit, SSPOV, is cleared through
software.
The SCL clock input must have a minimum high and
low for proper operation. The high and low times of the
I
SSP module, are shown in timing Parameter 100 and
Parameter 101.
2
C specification, as well as the requirements of the
Stop bit interrupts enabled to support Firmware
Controlled Master mode
Stop bit interrupts enabled to support Firmware
Controlled Master mode
support Firmware Controlled Master mode;
Slave is Idle
2
2
2
2
2
C Slave mode (7-bit address)
C Slave mode (10-bit address)
C Slave mode (7-bit address), with Start and
C Slave mode (10-bit address), with Start and
C Start and Stop bit interrupts enabled to
The Buffer Full bit, BF (SSPSTAT<0>), was set
before the transfer was received.
The SSP Overflow bit, SSPOV (SSPCON<6>),
was set before the transfer was received.
shows what happens when a data transfer
SLAVE MODE
®
2
Mid-Range MCU Family Reference
C mode, with the SSPEN bit set,
2
C modes to be selected:
 2010 Microchip Technology Inc.
2
C operation can be
2
C module.
2
C opera-

Related parts for PIC18F4431-E/P