PIC18F4431-E/P Microchip Technology, PIC18F4431-E/P Datasheet - Page 134

IC MCU FLASH 8KX16 40DIP

PIC18F4431-E/P

Manufacturer Part Number
PIC18F4431-E/P
Description
IC MCU FLASH 8KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4431-E/P

Core Size
8-Bit
Program Memory Size
16KB (8K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number Of I /o
36
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
256Byte
Ram Memory Size
768Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART, I2C, SPI, SSP
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
36
Number Of Timers
1 x 8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
9 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LDACICE0206 - ADAPTER MPLABICE 40P 600 MIL
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4431-E/P
Manufacturer:
MICROCHIP
Quantity:
1 785
Part Number:
PIC18F4431-E/P
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC18F4431-E/PT
Manufacturer:
JOHANSON
Quantity:
24 000
Part Number:
PIC18F4431-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F2331/2431/4331/4431
13.4
The TMR1 register pair (TMR1H:TMR1L) increments
from 0000h to FFFFh and rolls over to 0000h. The
Timer1 interrupt, if enabled, is generated on overflow,
which is latched in Timer1 Interrupt Flag bit, TMR1IF
(PIR1<0>). This interrupt can be enabled/disabled by
setting/clearing Timer1 Interrupt Enable bit, TMR1IE
(PIE1<0>).
13.5
If the CCP1 module is configured in Compare mode
to
(CCP1M<3:0> = 1011), this signal will reset Timer1 and
start an A/D conversion if the A/D module is enabled
(see
information).
Timer1 must be configured for either Timer or Synchro-
nized Counter mode to take advantage of this feature.
If Timer1 is running in Asynchronous Counter mode,
this Reset operation may not work.
In the event that a write to Timer1 coincides with a
Special Event Trigger from CCP1, the write will take
precedence.
In this mode of operation, the CCPR1H:CCPR1L regis-
ter pair effectively becomes the Period register for
Timer1.
13.6
Timer1 can be configured for 16-bit reads and writes
(see
(T1CON<7>) is set, the address for TMR1H is mapped
to a buffer register for the high byte of Timer1. A read
from TMR1L will load the contents of the high byte of
Timer1 into the Timer1 High Byte Buffer register. This
provides the user with the ability to accurately read all
16 bits of Timer1 without having to determine whether
a read of the high byte, followed by a read of the low
byte, is valid due to a rollover between reads.
DS39616D-page 134
Note:
Section 16.4.4 “Special Event Trigger”
generate
Figure
Timer1 Interrupt
Resetting Timer1 Using a CCP
Trigger Output
Timer1 16-Bit Read/Write Mode
The Special Event Triggers from the
CCP1 module will not set interrupt flag bit,
TMR1IF (PIR1<0>).
13-2). When the RD16 control bit
a
“Special
Event
Trigger”
for more
A write to the high byte of Timer1 must also take place
through the TMR1H Buffer register. Timer1 high byte is
updated with the contents of TMR1H when a write
occurs to TMR1L. This allows a user to write all 16 bits
to both the high and low bytes of Timer1 at once.
The high byte of Timer1 is not directly readable or writ-
able in this mode. All reads and writes must take place
through the Timer1 High Byte Buffer register. Writes to
TMR1H do not clear the Timer1 prescaler. The
prescaler is only cleared on writes to TMR1L.
13.7
Adding an external LP oscillator to Timer1 (such as the
one described in
gives users the option to include RTC functionality to
their applications. This is accomplished with an
inexpensive watch crystal to provide an accurate time
base, and several lines of application code to calculate
the time. When operating in Sleep mode and using a
battery or supercapacitor as a power source, it can
completely eliminate the need for a separate RTC
device and battery backup.
The application code routine, RTCisr, shown in
Example
increment a counter at one-second intervals using an
Interrupt Service Routine. Incrementing the TMR1
register pair to overflow triggers the interrupt and calls
the routine, which increments the seconds counter by
one. Additional counters for minutes and hours are
incremented as the previous counter overflow.
Since the register pair is 16 bits wide, counting up to
overflow the register directly from a 32.768 kHz clock
would take 2 seconds. To force the overflow at the
required one-second intervals, it is necessary to pre-
load it. The simplest method is to set the MSb of
TMR1H with a BSF instruction. Note that the TMR1L
register is never preloaded or altered; doing so may
introduce cumulative error over many cycles.
For this method to be accurate, Timer1 must operate in
Asynchronous mode and the Timer1 overflow interrupt
must be enabled (PIE1<0> = 1) as shown in the
routine, RTCinit. The Timer1 oscillator must also be
enabled and running at all times.
Using Timer1 as a Real-Time
Clock (RTC)
13-1, demonstrates a simple method to
Section 13.2 “Timer1
 2010 Microchip Technology Inc.
Oscillator”)

Related parts for PIC18F4431-E/P