AT91SAM9M10-CU Atmel, AT91SAM9M10-CU Datasheet - Page 779

IC MCU 16/32BIT ARM9 324TFBGA

AT91SAM9M10-CU

Manufacturer Part Number
AT91SAM9M10-CU
Description
IC MCU 16/32BIT ARM9 324TFBGA
Manufacturer
Atmel
Series
AT91SAMr
Datasheets

Specifications of AT91SAM9M10-CU

Core Processor
ARM9
Core Size
16/32-Bit
Speed
400MHz
Connectivity
EBI/EMI, Ethernet, I²C, SPI, SSC, UART/USART, USB
Peripherals
AC'97, DMA, LCD, POR, PWM, WDT
Number Of I /o
160
Program Memory Size
64KB (64K x 8)
Program Memory Type
ROM
Ram Size
128K x 8
Voltage - Supply (vcc/vdd)
0.9 V ~ 1.1 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
324-TFBGA
Processor Series
AT91SAMx
Core
ARM926EJ-S
Data Bus Width
32 bit
Data Ram Size
32 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
133 MHz
Number Of Programmable I/os
5
Number Of Timers
2 x 16 bit
Operating Supply Voltage
1.65 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM9M10-G45-EK
Controller Family/series
AT91
No. Of I/o's
160
Ram Memory Size
64KB
Cpu Speed
400MHz
No. Of Timers
2
Rohs Compliant
Yes
Cpu Family
AT91
Device Core
ARM926EJ-S
Device Core Size
32b
Frequency (max)
400MHz
Total Internal Ram Size
64KB
# I/os (max)
160
Number Of Timers - General Purpose
7
Operating Supply Voltage (typ)
1.8/2.5/3.3V
Operating Supply Voltage (max)
1.1/1.95/3.6V
Operating Supply Voltage (min)
0.9/1.65/1.8/3V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
324
Package Type
TFBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM9M10-CU
Manufacturer:
Atmel
Quantity:
996
Part Number:
AT91SAM9M10-CU
Manufacturer:
Atmel
Quantity:
10 000
36.5.1.7
6355B–ATARM–21-Jun-10
Receiving Frames
When a frame is received and the receive circuits are enabled, the EMAC checks the address
and, in the following cases, the frame is written to system memory:
The register receive buffer queue pointer points to the next entry (see
and the EMAC uses this as the address in system memory to write the frame to. Once the frame
has been completely and successfully received and written to system memory, the EMAC then
updates the receive buffer descriptor entry with the reason for the address match and marks the
area as being owned by software. Once this is complete an interrupt receive complete is set.
Software is then responsible for handling the data in the buffer and then releasing the buffer by
writing the ownership bit back to 0.
If the EMAC is unable to write the data at a rate to match the incoming frame, then an interrupt
receive overrun is set. If there is no receive buffer available, i.e., the next buffer is still owned by
software, the interrupt receive buffer not available is set. If the frame is not successfully
received, a statistic register is incremented and the frame is discarded without informing
software.
8. Write to the transmit start bit in the network control register.
• if it matches one of the four specific address registers.
• if it matches the hash address function.
• if it is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are allowed.
• if the EMAC is configured to copy all frames.
AT91SAM9M10
Table 36-1 on page
766)
779

Related parts for AT91SAM9M10-CU