PIC18F67J10-I/PT Microchip Technology, PIC18F67J10-I/PT Datasheet - Page 172

IC PIC MCU FLASH 64KX16 64TQFP

PIC18F67J10-I/PT

Manufacturer Part Number
PIC18F67J10-I/PT
Description
IC PIC MCU FLASH 64KX16 64TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F67J10-I/PT

Program Memory Type
FLASH
Program Memory Size
128KB (64K x 16)
Package / Case
64-TFQFP
Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
50
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3936 B
Interface Type
SPI/I2C/EUSART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
50
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136, DM183032, DM183022
Minimum Operating Temperature
- 40 C
On-chip Adc
11-ch x 10-bit
A/d Bit Size
10 bit
A/d Channels Available
11
Height
1 mm
Length
10 mm
Supply Voltage (max)
2.7 V, 3.6 V
Supply Voltage (min)
2 V, 2.7 V
Width
10 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
MA180015 - MODULE PLUG-IN 18F87J10 FOR HPCAC162062 - HEADER INTRFC MPLAB ICD2 64/80PAC164327 - MODULE SKT FOR 64TQFP
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F67J10-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F67J10-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F67J10-I/PT
0
PIC18F87J10
16.4
In Pulse-Width Modulation (PWM) mode, the CCPx pin
produces up to a 10-bit resolution PWM output. Since
the CCP4 and CCP5 pins are multiplexed with a
PORTG data latch, the appropriate TRISG bit must be
cleared to make the CCP4 or CCP5 pin an output.
Figure 16-4 shows a simplified block diagram of the
CCP module in PWM mode.
For a step-by-step procedure on how to set up a CCP
module for PWM operation, see Section 16.4.3
“Setup for PWM Operation”.
FIGURE 16-4:
A PWM output (Figure 16-5) has a time base (period)
and a time that the output stays high (duty cycle).
The frequency of the PWM is the inverse of the
period (1/period).
FIGURE 16-5:
DS39663D-page 170
Note 1:
Note:
Latch
Duty Cycle
TMR2 = PR2
Set CCPx pin
Reset
Match
TMR2 (TMR4) = PR2 (TMR4)
PWM Mode
The two LSbs of the Duty Cycle register are held by a
2-bit latch that is part of the module’s hardware. It is
physically separate from the CCPR registers.
Duty Cycle Register
Clearing the CCP4CON or CCP5CON
register will force the RG3 or RG4 output
latch (depending on device configuration)
to the default low level. This is not the
PORTG I/O data latch.
Duty Cycle
9
Comparator
CCPR1H
CCPR1L
Comparator
TMR2
PR2
Period
TMR2 (TMR4) = Duty Cycle
SIMPLIFIED PWM BLOCK
DIAGRAM
PWM OUTPUT
(1)
0
TMR2 (TMR4) = PR2 (PR4)
CCP1CON<5:4>
2 LSbs latched
from Q clocks
S
R
Q
Output Enable
TRIS
ECCP1
pin
Preliminary
16.4.1
The PWM period is specified by writing to the PR2
(PR4) register. The PWM period can be calculated
using Equation 16-1:
EQUATION 16-1:
PWM frequency is defined as 1/[PWM period].
When TMR2 (TMR4) is equal to PR2 (PR4), the
following three events occur on the next increment
cycle:
• TMR2 (TMR4) is cleared
• The CCPx pin is set (exception: if PWM duty
• The PWM duty cycle is latched from CCPRxL into
16.4.2
The PWM duty cycle is specified by writing to the
CCPRxL register and to the CCPxCON<5:4> bits. Up
to 10-bit resolution is available. The CCPRxL contains
the eight MSbs and the CCPxCON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPRxL:CCPxCON<5:4>. Equation 16-2 is used to
calculate the PWM duty cycle in time.
EQUATION 16-2:
CCPRxL and CCPxCON<5:4> can be written to at any
time, but the duty cycle value is not latched into
CCPRxH until after a match between PR2 (PR4) and
TMR2 (TMR4) occurs (i.e., the period is complete). In
PWM mode, CCPRxH is a read-only register.
cycle = 0%, the CCPx pin will not be set)
CCPRxH
Note:
PWM Duty Cycle = (CCPR
PWM Period = [(PR2) + 1] • 4 • T
PWM PERIOD
The Timer2 and Timer 4 postscalers (see
Section 13.0
Section 15.0 “Timer4 Module”) are not
used in the determination of the PWM
frequency. The postscaler could be used
to have a servo update rate at a different
frequency than the PWM output.
PWM DUTY CYCLE
T
OSC
(TMR2 Prescale Value)
© 2006 Microchip Technology Inc.
• (TMR2 Prescale Value)
“Timer2
X
L:CCP
X
CON<5:4>) •
Module”
OSC
and

Related parts for PIC18F67J10-I/PT