AD9915 AD [Analog Devices], AD9915 Datasheet - Page 26

no-image

AD9915

Manufacturer Part Number
AD9915
Description
2.5 GSPS Direct Digital Synthesizer with 12-Bit DAC
Manufacturer
AD [Analog Devices]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9915BCPZ
Manufacturer:
AD
Quantity:
9 200
Part Number:
AD9915BCPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Event 13—An I/O update registers that the autoclear digital
ramp accumulator bit is set, resetting the ramp accumulator.
However, with an automatic clear, the ramp accumulator is held
in reset for only a single DDS clock cycle. This forces the DRG
output to the lower limit, but the ramp accumulator is immedi-
ately made available for normal operation. In this example, the
DRCTL pin remains Logic 1; therefore, the DRG output restarts
the previous positive ramp profile.
No-Dwell Ramp Generation
The two no-dwell high and no-dwell low bits (0x01[18:17]) in
CFR2 add to the flexibility of the DRG capabilities. During normal
ramp generation, when the DRG output reaches the programmed
upper or lower limit, it simply remains at the limit until the
operating parameters dictate otherwise. However, during no-dwell
operation, the DRG output does not necessarily remain at the limit.
For example, if the digital ramp no-dwell high bit is set when the
DRG reaches the upper limit, it automatically (and immediately)
snaps to the lower limit (that is, it does not ramp back to the lower
limit; it jumps to the lower limit). Likewise, when the digital ramp
no-dwell low bit is set, and the DRG reaches the lower limit, it
automatically (and immediately) snaps to the upper limit.
During no-dwell operation, the DRCTL pin is monitored for state
transitions only; that is, the static logic level is immaterial.
During no-dwell high operation, a positive transition of the
DRCTL pin initiates a positive slope ramp, which continues
uninterrupted (regardless of any further activity on the DRCTL
pin) until the upper limit is reached.
During no-dwell low operation, a negative transition of the DRCTL
pin initiates a negative slope ramp, which continues uninterrupted
(regardless of any further activity on the DRCTL pin) until the
lower limit is reached.
Setting both no-dwell bits invokes a continuous ramping mode
of operation; that is, the DRG output automatically oscillates
between the two limits using the programmed slope parameters.
Furthermore, the function of the DRCTL pin is slightly different.
Instead of controlling the initiation of the ramp sequence, it
only serves to change the direction of the ramp; that is, if the
DRG output is in the midst of a positive slope and the DRCTL
pin transitions from Logic 1 to Logic 0, the DRG immediately
switches to the negative slope parameters and resumes oscilla-
AD9915
DRG OUTPUT
DROVER
DRCTL
1
P DDS CLOCK CYCLES
2
Figure 39. No-Dwell High Ramp Generation
t
LOWER LIMIT
Rev. A | Page 26 of 48
3
STEP SIZE
POSITIVE
4
tion between the limits. Likewise, if the DRG output is in the
midst of a negative slope and the DRCTL pin transitions from
Logic 0 to Logic 1, the DRG immediately switches to the positive
slope parameters and resumes oscillation between the limits.
When both no-dwell bits are set, the DROVER signal produces
a positive pulse (two cycles of the DDS clock) each time the
DRG output reaches either of the programmed limits (assuming
that the DRG over output enable bit (0x01[13]) is set).
A no-dwell high DRG output waveform is shown in Figure 39.
The waveform diagram assumes that the digital ramp no-dwell
high bit is set and has been registered by an I/O update. The
status of the DROVER pin is also shown with the assumption
that the DRG over output enable bit has been set.
The circled numbers in Figure 39 indicate specific events, which
are explained as follows:
Event 1—Indicates the instant that an I/O update registers that the
digital ramp enable bit is set.
Event 2—DRCTL transitions to Logic 1, initiating a positive
slope at the DRG output.
Event 3—DRCTL transitions to Logic 0, which has no effect on
the DRG output.
Event 4—Because the digital ramp no-dwell high bit is set,
the moment that the DRG output reaches the upper limit, it
immediately switches to the lower limit, where it remains
until the next Logic 0 to Logic 1 transition of DRCTL.
Event 5—DRCTL transitions from Logic 0 to Logic 1, which
restarts a positive slope ramp.
Event 6 and Event 7—DRCTL transitions are ignored until the
DRG output reaches the programmed upper limit.
Event 8—Because the digital ramp no-dwell high bit is set, the
moment that the DRG output reaches the upper limit, it immedi-
ately switches to the lower limit, where it remains until the next
Logic 0 to Logic 1 transition of DRCTL.
Operation with the digital ramp no-dwell low bit set (instead of
the digital ramp no-dwell high bit) is similar, except that the
DRG output ramps in the negative direction on a Logic 1 to
Logic 0 transition of DRCTL and jumps to the upper limit upon
reaching the lower limit.
5
UPPER LIMIT
6
7
8
Data Sheet

Related parts for AD9915