SAM9XE512 Atmel Corporation, SAM9XE512 Datasheet - Page 632

no-image

SAM9XE512

Manufacturer Part Number
SAM9XE512
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9XE512

Flash (kbytes)
512 Kbytes
Pin Count
217
Max. Operating Frequency
180 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
6
Ssc
1
Ethernet
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
Yes
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
312
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.65 to 1.95
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
No
37.7.2
37.7.3
6254C–ATARM–22-Jan-10
Data Transfer Operation
Read Operation
The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream,
etc.). These kind of transfers can be selected setting the Transfer Type (TRTYP) field in the MCI
Command Register (MCI_CMDR).
These operations can be done using the features of the Peripheral DMA Controller (PDC). If the
PDCMODE bit is set in MCI_MR, then all reads and writes use the PDC facilities.
In all cases, the block length (BLKLEN field) must be defined either in the mode register
MCI_MR, or in the Block Register MCI_BLKR. This field determines the size of the data block.
Enabling PDC Force Byte Transfer (PDCFBYTE bit in the MCI_MR) allows the PDC to manage
with internal byte transfers, so that transfer of blocks with a size different from modulo 4 can be
supported. When PDC Force Byte Transfer is disabled, the PDC type of transfers are in words,
otherwise the type of transfers are in bytes.
Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions
are defined (the host can use either one at any time):
The following flowchart shows how to read a single block with or without use of PDC facilities. In
this example (see
the user can configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end
of read.
• Open-ended/Infinite Multiple block read (or write):
• Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):
The number of blocks for the read (or write) multiple block operation is not defined. The card
will continuously transfer (or program) data blocks until a stop transmission command is
received.
The card will transfer (or program) the requested number of data blocks and terminate the
transaction. The stop command is not required at the end of this type of multiple block read
(or write), unless terminated with an error. In order to start a multiple block read (or write)
with pre-defined block count, the host must correctly program the MCI Block Register
(MCI_BLKR). Otherwise the card will start an open-ended multiple block read. The BCNT
field of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks).
Programming the value 0 in the BCNT field corresponds to an infinite block transfer.
Figure
AT91SAM9XE128/256/512 Preliminary
37-10), a polling method is used to wait for the end of read. Similarly,
632

Related parts for SAM9XE512