SAM9XE512 Atmel Corporation, SAM9XE512 Datasheet - Page 325

no-image

SAM9XE512

Manufacturer Part Number
SAM9XE512
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9XE512

Flash (kbytes)
512 Kbytes
Pin Count
217
Max. Operating Frequency
180 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
6
Ssc
1
Ethernet
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
Yes
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
312
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.65 to 1.95
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
No
6254C–ATARM–22-Jan-10
Note:
• If a new value for CSS field corresponds to PLL Clock,
• If a new value for CSS field corresponds to Main Clock or Slow Clock,
The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is slow clock.
The PRES field is used to control the Master Clock prescaler. The user can choose between
different values (1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by
PRES parameter. By default, PRES parameter is set to 0 which means that master clock is
equal to slow clock.
The MDIV field is used to control the Master Clock divider. It is possible to choose between
different values (0, 1, 2). The Master Clock output is Processor Clock divided by 1, 2 or 4,
depending on the value programmed in MDIV. By default, MDIV is set to 0, which indicates
that the Processor Clock is equal to the Master Clock.
Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.
The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.
Code Example:
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)
IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is
unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB) goes high and MCKRDY is set.
While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While
PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further
information, see
Section
AT91SAM9XE128/256/512 Preliminary
28.8.2.
“Clock Switching Waveforms” on page
329.
325

Related parts for SAM9XE512