SAM9XE512 Atmel Corporation, SAM9XE512 Datasheet - Page 322

no-image

SAM9XE512

Manufacturer Part Number
SAM9XE512
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9XE512

Flash (kbytes)
512 Kbytes
Pin Count
217
Max. Operating Frequency
180 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
6
Ssc
1
Ethernet
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
Yes
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
312
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.65 to 1.95
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
No
28.4
28.5
28.6
6254C–ATARM–22-Jan-10
USB Clock Controller
Peripheral Clock Controller
Programmable Clock Output Controller
The USB Source Clock is always generated from the PLL B output. If using the USB, the user
must program the PLL to generate a 48 MHz, a 96 MHz or a 192 MHz signal with an accuracy of
± 0.25% depending on the USBDIV bit in CKGR_PLLBR (see
When the PLL B output is stable, i.e., the LOCKB is set:
Figure 28-3. USB Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master
Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Periph-
eral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).
When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.
In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.
The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.
The PMC controls
dently programmed via the PMC_PCKx registers.
PCKx can be independently selected between the Slow clock, the PLL A output, the PLL B out-
put and the main clock by writing the CSS field in PMC_PCKx. Each output signal can also be
divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKx.
Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).
• The USB host clock can be enabled by setting the UHP bit in PMC_SCER. To save power on
this peripheral when it is not used, the user can set the UHP bit in PMC_SCDR. The UHP bit
in PMC_SCSR gives the activity of this clock. The USB host port require both the 12/48 MHz
signal and the Master Clock. The Master Clock may be controlled via the Master Clock
Controller.
Source
Clock
USB
2
signals to be output on external pins PCKx. Each signal can be indepen-
AT91SAM9XE128/256/512 Preliminary
USBDIV
Divider
/1,/2,/4
UDP
UHP
Figure
UDP Clock (UDPCK)
UHP Clock (UHPCK)
28-3).
322

Related parts for SAM9XE512