SAM9XE512 Atmel Corporation, SAM9XE512 Datasheet - Page 403

no-image

SAM9XE512

Manufacturer Part Number
SAM9XE512
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9XE512

Flash (kbytes)
512 Kbytes
Pin Count
217
Max. Operating Frequency
180 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
6
Ssc
1
Ethernet
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
Yes
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
312
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.65 to 1.95
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
No
Figure 31-4. Output Line Timings
31.4.8
31.4.9
6254C–ATARM–22-Jan-10
Write PIO_ODSR at 1
Write PIO_ODSR at 0
Write PIO_CODR
Write PIO_SODR
Inputs
Input Glitch Filtering
PIO_ODSR
PIO_PDSR
MCK
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.
Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in
The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.
When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.
APB Access
AT91SAM9XE128/256/512 Preliminary
2 cycles
APB Access
2 cycles
Figure
31-5.
403

Related parts for SAM9XE512