S25FL128SAGMFI011 Spansion, S25FL128SAGMFI011 Datasheet - Page 105

no-image

S25FL128SAGMFI011

Manufacturer Part Number
S25FL128SAGMFI011
Description
Flash 128Mb 3V 133MHz Serial NOR Flash
Manufacturer
Spansion
Datasheet

Specifications of S25FL128SAGMFI011

Rohs
yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S25FL128SAGMFI011
Manufacturer:
SPANSION
Quantity:
20 000
July 12, 2012 S25FL128S_256S_00_05
Then the memory contents, at the address given, is shifted out, in a DDR fashion, two bits at a time on each
clock edge through IO0 (SI) and IO1 (SO). Two bits are shifted out at the SCK frequency by the rising and
falling edge of the SCK signal.
The DDR Dual I/O Read command improves throughput with two I/O signals — IO0 (SI) and IO1 (SO). It is
similar to the Dual I/O Read command but transfers two address, mode, or data bits on every edge of the
clock. In some applications, the reduced instruction overhead might allow for code execution (XIP) directly
from S25FL128S and S25FL256S devices.
The maximum operating clock frequency for DDR Dual I/O Read command is 66 MHz.
For DDR Dual I/O Read commands, there is a latency required after the last address bits are shifted into IO0
and IO1, before data begins shifting out of IO0 and IO1. There are different ordering part numbers that select
the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced
High Performance LC (EHPLC) table. The number of latency (dummy) clocks is determined by the frequency
of SCK (refer to
Codes for DDR Enhanced High Performance on page
in the Configuration Register (CR1).
The HPLC table does not provide cycles for mode bits so each Dual I/O command starts with the 8 bit
instruction, followed by address, followed by a latency period. This latency period allows the device’s internal
circuitry enough time to access the initial address. During these latency cycles, the data value on SI (IO0) and
SO (IO1) are “don’t care” and may be high impedance. When the Data Learning Pattern (DLP) is enabled the
host system must not drive the IO signals during the dummy cycles. The IO signals must be left high
impedance by the host so that the memory device can drive the DLP during the dummy cycles.
The EHPLC table does provide cycles for mode bits so a series of Dual I/O DDR commands may eliminate
the 8 bit instruction after the first command sends a complementary mode bit pattern, as shown in
Figure 10.46
instruction sequence and dramatically reduces initial access times (improves XIP performance). The Mode
bits control the length of the next DDR Dual I/O Read operation through the inclusion or exclusion of the first
byte instruction code. If the upper nibble (IO[7:4]) and lower nibble (IO[3:0]) of the Mode bits are
complementary (i.e. 5h and Ah) the device transitions to Continuous DDR Dual I/O Read Mode and the next
address can be entered (after CS# is raised high and then asserted low) without requiring the BDh or BEh
instruction, as shown in
sequence. The following sequences will release the device from Continuous DDR Dual I/O Read mode; after
which, the device can accept standard SPI commands:
The address can start at any byte location of the memory array. The address is automatically incremented to
the next higher address in sequential order after each byte of data is shifted out. The entire memory can
therefore be read out with one single read instruction and address 000000h provided. When the highest
address is reached, the address counter will wrap around and roll back to 000000h, allowing the read
sequence to be continued indefinitely.
CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate.
The HOLD function is not valid during Dual I/O DDR commands.
Note that the memory devices may drive the IOs with a preamble prior to the first data value. The preamble is
a data learning pattern (DLP) that is used by the host controller to optimize data capture at higher
frequencies. The preamble DLP drives the IO bus for the four clock cycles immediately before data is output.
The host must be sure to stop driving the IO bus prior to the time that the memory starts outputting the
preamble.
The preamble is intended to give the host controller an indication about the round trip time from when the host
drives a clock edge to when the corresponding data value returns from the memory device. The host
controller will skew the data capture point during the preamble period to optimize timing margins and then use
the same skew time to capture the data during the rest of the read operation. The optimized capture point will
be determined during the preamble period of every read operation. This optimization strategy is intended to
1. During the DDR Dual I/O Read Command Sequence, if the Mode bits are not complementary the
2. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input
next time CS# is raised high and then asserted low the device will be released from DDR Dual I/O
Read mode.
(IO0 and IO1) are not set for a valid instruction sequence, then the device will be released from
DDR Dual I/O Read mode.
and
Table 8.11, Latency Codes for DDR High Performance on page 60
Figure 10.48 on page
Figure 10.47 on page
D a t a
S25FL128S and S25FL256S
S h e e t
106. This added feature removes the need for the eight bit SDR
106, and thus, eliminating eight cycles from the command
61). The number of dummy cycles is set by the LC bits
or
Table 8.13, Latency
105

Related parts for S25FL128SAGMFI011