ATTINY2313A-PU Atmel, ATTINY2313A-PU Datasheet - Page 174

IC MCU AVR 2K FLASH 20MHZ 20DIP

ATTINY2313A-PU

Manufacturer Part Number
ATTINY2313A-PU
Description
IC MCU AVR 2K FLASH 20MHZ 20DIP
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheets

Specifications of ATTINY2313A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
18
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-DIP (0.300", 7.62mm)
Processor Series
ATTINY2x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
128 B
Interface Type
SPI, USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
18
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Controller Family/series
ATtiny
No. Of I/o's
18
Eeprom Memory Size
128Byte
Ram Memory Size
128Byte
Cpu Speed
20MHz
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY2313A-PU
Manufacturer:
TI
Quantity:
1 560
Part Number:
ATTINY2313A-PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATTINY2313A-PU
Quantity:
1 800
19.5
19.6
19.6.1
19.6.2
174
EEPROM Write Prevents Writing to SPMCSR
Reading Lock Bits, Fuse Bits and Signature Data from Software
ATtiny2313A/4313
Reading Lock Bits from Firmware
Reading Fuse Bits from Firmware
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible for firmware to read device fuse and lock bits. In addition, firmware can also read
data from the device signature imprint table (see
Note:
Lock bit values are returned in the destination register after an LPM instruction has been issued
within three CPU cycles after RFLB and SPMEN bits have been set in SPMCSR. The RFLB and
SPMEN bits automatically clear upon completion of reading the lock bits, or if no LPM instruction
is executed within three CPU cycles, or if no SPM instruction is executed within four CPU cycles.
When RFLB and SPMEN are cleared LPM functions normally.
To read the lock bits, follow the below procedure:
If successful, the contents of the destination register are as follows.
See section
The algorithm for reading fuse bytes is similar to the one described above for reading lock bits,
only the addresses are different. To read the Fuse Low Byte (FLB), follow the below procedure:
If successful, the contents of the destination register are as follows.
Refer to
Bit
Rd
Bit
Rd
1. Load the Z-pointer with 0x0001.
2. Set RFLB and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read the lock bits from the LPM destination register.
1. Load the Z-pointer with 0x0000.
2. Set RFLB and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read the FLB from the LPM destination register.
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are unpro-
grammed, will be read as one.
Table 20-5 on page 180
“Program And Data Memory Lock Bits” on page 178
FLB7
7
7
FLB6
6
6
for a detailed description and mapping of the Fuse Low Byte.
FLB5
5
5
FLB4
4
4
page
FLB3
3
3
175).
FLB2
2
2
for more information.
FLB1
LB2
1
1
FLB0
LB1
0
0
8246A–AVR–11/09

Related parts for ATTINY2313A-PU