DSPIC33EP128MC504-I/PT Microchip Technology, DSPIC33EP128MC504-I/PT Datasheet - Page 49

no-image

DSPIC33EP128MC504-I/PT

Manufacturer Part Number
DSPIC33EP128MC504-I/PT
Description
Digital Signal Processors & Controllers - DSP, DSC 16B 128KB FL 16KBR 60MHz 44P OpAmps
Manufacturer
Microchip Technology
Type
dsPIC33E/PIC24Er
Datasheet

Specifications of DSPIC33EP128MC504-I/PT

Rohs
yes
Core
dsPIC33E
Data Bus Width
16 bit
Program Memory Size
128 KB
Data Ram Size
16 KB
Maximum Clock Frequency
7.37 MHz, 32 kHz
Number Of Programmable I/os
35
Number Of Timers
5 x 16-bit, 2 x 32-bit
Device Million Instructions Per Second
70 MIPs
Operating Supply Voltage
3 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Package / Case
TQFP-44
Mounting Style
SMD/SMT
Family / Core
dsPIC33E/PIC24E
Interface Type
CAN, I2C, SPI, UART
Minimum Operating Temperature
- 40 C
On-chip Adc
Yes
Product
DSPs
Program Memory Type
Flash
Supply Current
10 mA

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33EP128MC504-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
4.2
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/
50X, and PIC24EPXXXGP/MC20X CPU has a
separate 16-bit wide data memory space. The data
space is accessed using separate Address Generation
Units (AGUs) for read and write operations. The data
memory maps, which are presented by device family
and memory size, are shown in
Figure
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This arrangement gives a base data space address
range of 8 Kbytes or 4K words.
The base data space address is used in conjunction with
a read or write page register (DSRPAG or DSWPAG) to
form an extended data space, which has a total address
range of 16 MB.
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X,
and PIC24EPXXXGP/MC20X devices implement up to
56 Kbytes of data memory. If an EA point to a location
outside of this area, an all-zero word or byte is returned.
4.2.1
The data memory space is organized in byte
addressable, 16-bit wide blocks. Data is aligned in data
memory and registers as 16-bit words, but all data
space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.
4.2.2
To maintain backward compatibility with PIC
devices and improve data space memory usage
efficiency,
dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/
MC20X instruction set supports both word and byte
operations. As a consequence of byte accessibility, all
effective address calculations are internally scaled to
step through word-aligned memory. For example, the
core recognizes that Post-Modified Register Indirect
Addressing mode [Ws++] results in a value of Ws + 1
for byte operations and Ws + 2 for word operations.
A data byte read, reads the complete word that
contains the byte, using the LSb of any EA to determine
which byte to select. The selected byte is placed onto
the LSB of the data path. That is, data memory and
registers are organized as two parallel byte-wide
entities with shared (word) address decode but
separate write lines. Data byte writes only write to the
corresponding side of the array or register that matches
the byte address.
 2011-2012 Microchip Technology Inc.
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X
4-16.
Data Address Space
DATA SPACE WIDTH
DATA MEMORY ORGANIZATION
AND ALIGNMENT
the
dsPIC33EPXXXGP50X,
Figure 4-7
through
®
MCU
All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations, or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap is generated. If the error occurred on a read, the
instruction underway is completed. If the error occurred
on a write, the instruction is executed but the write does
not occur. In either case, a trap is then executed,
allowing the system and/or user application to examine
the machine state prior to execution of the address
Fault.
All byte loads into any W register are loaded into the
LSB. The MSB is not modified.
A Sign-Extend instruction (SE) is provided to allow user
applications to translate 8-bit signed data to 16-bit
signed values. Alternatively, for 16-bit unsigned data,
user applications can clear the MSB of any W register
by executing a Zero-Extend (ZE) instruction on the
appropriate address.
4.2.3
The first 4 Kbytes of the Near Data Space, from 0x0000
to 0x0FFF, is primarily occupied by Special Function
Registers
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X,
and PIC24EPXXXGP/MC20X core and peripheral
modules for controlling the operation of the device.
SFRs are distributed among the modules that they
control, and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’.
4.2.4
The 8 Kbyte area between 0x0000 and 0x1FFF is
referred to as the near data space. Locations in this
space are directly addressable through a 13-bit abso-
lute address field within all memory direct instructions.
Additionally, the whole data space is addressable using
MOV instructions, which support Memory Direct
Addressing mode with a 16-bit address field, or by
using Indirect Addressing mode using a working
register as an Address Pointer.
Note:
SFR SPACE
The actual set of peripheral features and
interrupts varies by the device. Refer to
the corresponding device tables and
pinout
information.
NEAR DATA SPACE
(SFRs).
diagrams
These
are
for
DS70657F-page 49
used
device-specific
by
the

Related parts for DSPIC33EP128MC504-I/PT