OX16PCI952-TQAG OXFORD [Oxford Semiconductor], OX16PCI952-TQAG Datasheet - Page 42

no-image

OX16PCI952-TQAG

Manufacturer Part Number
OX16PCI952-TQAG
Description
Integrated High Performance Dual UARTs, Parallel Port and 5.0v PCI interface
Manufacturer
OXFORD [Oxford Semiconductor]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
OX16PCI952-TQAG
Manufacturer:
OXFORD
Quantity:
3
Part Number:
OX16PCI952-TQAG
Manufacturer:
OXFORD
Quantity:
20 000
750 (normal) mode:
logic 0 ⇒ CTS/RTS flow control disabled.
logic 1 ⇒ CTS/RTS flow control enabled.
In non-enhanced mode, this bit enables the CTS/RTS out-
of-band flow control.
MCR[6]: IrDA mode
logic 0 ⇒ Standard serial receiver and transmitter data
logic 1 ⇒ Data will be transmitted and received in IrDA
This function is only available in Enhanced mode. It
requires a 16x clock to function correctly.
MCR[7]: Baud rate prescaler select
logic 0 ⇒ Normal (divide by 1) baud rate generator
logic 1 ⇒ Divide-by-“M+N/8”
where M & N are programmed in CPR (ICR offset 0x01).
After a hardware reset, CPR defaults to 0x20 (divide-by-4)
and MCR[7] is reset. User writes to this flag will only take
effect in Enhanced mode. See section 7.9.1.
7.8
7.8.1
The divisor latch registers are used to program the baud
rate divisor. This is a value between 1 and 65535 by which
the input clock is divided by in order to generate serial
baud rates. After a hardware reset, the baud rate used by
the transmitter and receiver is given by:
Where divisor is given by DLL + ( 256 x DLM ). More
flexible baud rate generation options are also available.
See section 7.10 for full details.
DS-0028 Jul 05
OXFORD SEMICONDUCTOR LTD.
Other Standard Registers
Divisor Latch Registers ‘DLL & DLM’
format.
format.
prescaler selected.
prescaler selected.
Baudrate
=
16
InputClock
*
baud
Divisor
rate
generator
External-Free Release
7.7.2
MSR[0]: Delta CTS#
Indicates that the CTS# input has changed since the last
time the MSR was read.
MSR[1]: Delta DSR#
Indicates that the DSR# input has changed since the last
time the MSR was read.
MSR[2]: Trailing edge RI#
Indicates that the RI# input has changed from low to high
since the last time the MSR was read.
MSR[3]: Delta DCD#
Indicates that the DCD# input has changed since the last
time the MSR was read.
MSR[4]: CTS
This bit is the complement of the CTS# input. It is
equivalent to RTS (MCR[1]) in internal loop-back mode.
MSR[5]: DSR
This bit is the complement of the DSR# input. It is
equivalent to DTR (MCR[0]) in internal loop-back mode.
MSR[6]: RI
This bit is the complement of the RI# input. In internal loop-
back mode it is equivalent to the internal OUT1.
MSR[7]: DCD
This bit is the complement of the DCD# input. In internal
loop-back mode it is equivalent to the internal OUT2.
7.8.2
The scratch pad register does not affect operation of the
rest of the UART in any way and can be used for
temporary data storage. The register may also be used to
define an offset value to access the registers in the
Indexed Control Register set. For more information on
Indexed Control registers see sections 7.2 and 7.11.
Modem Status Register ‘MSR’
Scratch Pad Register ‘SPR’
OX16PCI952
Page 42

Related parts for OX16PCI952-TQAG