ATmega32U4 Atmel Corporation, ATmega32U4 Datasheet - Page 334

no-image

ATmega32U4

Manufacturer Part Number
ATmega32U4
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32U4

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
14
Hardware Qtouch Acquisition
No
Max I/o Pins
26
Ext Interrupts
13
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
12
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
3.3
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
2
Pwm Channels
8
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32U4-16AU
Manufacturer:
MAXIM
Quantity:
1 000
Part Number:
ATmega32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATmega32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATmega32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
Part Number:
ATmega32U4RC-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
27.5
27.5.1
27.5.2
7766F–AVR–11/10
Entering the Boot Loader Program
Regular application conditions.
Boot Reset Fuse
Table 27-2.
Note:
Table 27-3.
Note:
The bootloader can be executed with three different conditions:
A jump or call from the application program. This may be initiated by a trigger such as a com-
mand received via USART, SPI or USB.
The Boot Reset Fuse (BOOTRST) can be programmed so that the Reset Vector is pointing to
the Boot Flash start address after a reset. In this case, the Boot Loader is started after a reset.
After the application code is loaded, the program can start executing the application code. Note
that the fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse
BLB0 Mode
BLB1 Mode
1
2
3
4
1
2
3
4
1. “1” means unprogrammed, “0” means programmed
1. “1” means unprogrammed, “0” means programmed
Boot Lock Bit0 Protection Modes (Application Section)
Boot Lock Bit1 Protection Modes (Boot Loader Section)
BLB02
BLB12
1
1
0
0
1
1
0
0
BLB01
BLB11
1
0
0
1
1
0
0
1
Protection
No restrictions for SPM or (E)LPM accessing the
Application section.
SPM is not allowed to write to the Application section.
SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.
(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.
Protection
No restrictions for SPM or (E)LPM accessing the Boot
Loader section.
SPM is not allowed to write to the Boot Loader section.
SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.
(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.
ATmega16/32U4
(1)
(1)
334

Related parts for ATmega32U4