ATmega32U4 Atmel Corporation, ATmega32U4 Datasheet - Page 276

no-image

ATmega32U4

Manufacturer Part Number
ATmega32U4
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32U4

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
14
Hardware Qtouch Acquisition
No
Max I/o Pins
26
Ext Interrupts
13
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
12
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
3.3
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
2
Pwm Channels
8
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32U4-16AU
Manufacturer:
MAXIM
Quantity:
1 000
Part Number:
ATmega32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATmega32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATmega32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
Part Number:
ATmega32U4RC-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32U4RC-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
22.15.2
22.16 Overflow
22.17 Interrupts
7766F–AVR–11/10
CRC Error
A CRC error can occur during OUT stage if the USB controller detects a bad received packet. In
this situation, the STALLEDI interrupt is triggered. This does not prevent the RXOUTI interrupt
from being triggered.
In Control, Isochronous, Bulk or Interrupt Endpoint, an overflow can occur during OUT stage, if
the host attempts to write in a bank that is too small for the packet. In this situation, the OVERFI
interrupt is triggered (if enabled). The packet is acknowledged and the RXOUTI interrupt is also
triggered (if enabled). The bank is filled with the first bytes of the packet.
It is not possible to have overflow error during IN stage, in the CPU side, since the CPU should
write only if the bank is ready to access data (TXINI=1 or RWAL=1).
The next figure shows all the interrupts sources:
Figure 22-4. USB Device Controller Interrupt System
There are 2 kind of interrupts: processing (i.e. their generation are part of the normal processing)
and exception (errors).
Processing interrupts are generated when:
Exception Interrupts are generated when:
• VBUS plug-in detection (insert, remove)(VBUSTI)
• Upstream resume(UPRSMI)
• End of resume(EORSMI)
• Wake up(WAKEUPI)
• End of reset (Speed Initialization)(EORSTI)
• Start of frame(SOFI, if FNCERR=0)
• Suspend detected after 3 ms of inactivity(SUSPI)
• CRC error in frame number of SOF(SOFI, FNCERR=1)
EORSMI
UPRSMI
UDINT.6
UDINT.5
WAKEUPI
UDINT.4
EORSTI
UDINT.3
UDINT.2
UDINT.0
SUSPI
SOFI
UPRSME
EORSME
UDIEN.6
UDIEN.5
WAKEUPE
UDIEN.4
EORSTE
UDIEN.3
UDIEN.2
UDIEN.0
SUSPE
SOFE
USB Device
ATmega16/32U4
Interrupt
276

Related parts for ATmega32U4