HD64F3337YCP16 Renesas Electronics America, HD64F3337YCP16 Datasheet - Page 332

no-image

HD64F3337YCP16

Manufacturer Part Number
HD64F3337YCP16
Description
IC H8 MCU FLASH 60K 84PLCC
Manufacturer
Renesas Electronics America
Series
H8® H8/300r
Datasheets

Specifications of HD64F3337YCP16

Core Processor
H8/300
Core Size
8-Bit
Speed
16MHz
Connectivity
Host Interface, I²C, SCI
Peripherals
POR, PWM, WDT
Number Of I /o
74
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-20°C ~ 75°C
Package / Case
84-PLCC
Package
84PLCC
Family Name
H8
Maximum Speed
16 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
74
Interface Type
HIF/I2C/SCI
On-chip Adc
8-chx10-bit
On-chip Dac
2-chx8-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HD64F3337YCP16
Manufacturer:
Renesas Electronics America
Quantity:
10 000
Part Number:
HD64F3337YCP16V
Manufacturer:
COILMASTER
Quantity:
30 000
Part Number:
HD64F3337YCP16V
Manufacturer:
RENESAS
Quantity:
1 029
Part Number:
HD64F3337YCP16V
Manufacturer:
Renesas Electronics America
Quantity:
10 000
13.3.4
In slave transmit mode, the slave device outputs the transmit data, and the master device outputs
the transmit clock and returns an acknowledge signal. The transmit procedure and operations in
slave transmit mode are described below.
1. Set bits MLS and WAIT in ICMR and bits MST, TRS, ACK, and CKS2 to CKS0 in ICCR
2. After the slave device detects a start condition, if the first byte matches its slave address, at the
3. Software clears IRIC to 0 in ICSR.
4. Write data in ICDR. The slave device outputs the written data serially in step with the clock
5. When 1 byte of data has been transmitted, at the rise of the ninth transmit clock pulse IRIC is
6. Software clears IRIC to 0 in ICSR.
7. To continue transmitting, write the next transmit data in ICDR.
Steps 5 to 7 can be repeated to transmit continuously. To end the transmission, write H'FF in
ICDR. When a stop condition is detected (a low-to-high transition of SDA while SCL is high),
BBSY will be cleared to 0 in ICSR.
300
according to the operating mode. Set bit ICE in ICCR to 1.
ninth clock pulse the slave device drives SDA low to acknowledge the transfer. At the same
time, IRIC is set to 1 in ICSR, generating an interrupt. If the eighth data bit (R/W) is 1, the
TRS bit is set to 1 in ICCR, automatically causing a transition to slave transmit mode. The
slave device holds SCL low from the fall of the transmit clock until data is written in ICDR.
output by the master device, with the timing shown in figure 13.8.
set to 1 in ICSR. If IEIC is set to 1 in ICCR, a CPU interrupt is requested. The slave device
holds SCL low from the fall of the transmit clock until data is written in ICDR. The master
device drives SDA low at the ninth clock pulse to acknowledge the data. The acknowledge
signal is stored in ACKB in ICSR, and can be used to check whether the transfer was carried
out normally.
Slave Transmit Operation

Related parts for HD64F3337YCP16