AT91SAM9R64-CU-999 Atmel, AT91SAM9R64-CU-999 Datasheet - Page 809

IC MCU ARM9 64K SRAM 144LFBGA

AT91SAM9R64-CU-999

Manufacturer Part Number
AT91SAM9R64-CU-999
Description
IC MCU ARM9 64K SRAM 144LFBGA
Manufacturer
Atmel
Series
AT91SAMr
Datasheet

Specifications of AT91SAM9R64-CU-999

Core Processor
ARM9
Core Size
16/32-Bit
Speed
240MHz
Connectivity
EBI/EMI, I²C, MMC, SPI, SSC, UART/USART, USB
Peripherals
AC'97, POR, PWM, WDT
Number Of I /o
49
Program Memory Size
32KB (32K x 8)
Program Memory Type
ROM
Ram Size
72K x 8
Voltage - Supply (vcc/vdd)
1.08 V ~ 1.32 V
Data Converters
A/D 3x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LFBGA
Processor Series
AT91SAMx
Core
ARM926EJ-S
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
SPI, TWI, UART
Maximum Clock Frequency
240 MHz
Number Of Programmable I/os
118
Operating Supply Voltage
1.65 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM9RL-EK
Minimum Operating Temperature
- 40 C
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM9R64-CU-999
Manufacturer:
Atmel
Quantity:
10 000
Figure 42-4. Non Overlapped Center Aligned Waveforms
6289C–ATARM–28-May-09
PWM0
PWM1
Note:
When center aligned, the internal channel counter increases up to CPRD and.decreases down
to 0. This ends the period.
When left aligned, the internal channel counter increases up to CPRD and is reset. This ends
the period.
• the waveform duty cycle. This channel parameter is defined in the CDTY field of the
• the waveform polarity. At the beginning of the period, the signal can be at high or low level.
• the waveform alignment. The output waveform can be left or center aligned. Center aligned
(
------------------------------------------ -
(
----------------------------------------------------- -
If the waveform is center aligned then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will
be:
By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:
PWM_CDTYx register.
If the waveform is left aligned then:
If the waveform is center aligned, then:
This property is defined in the CPOL field of the PWM_CMRx register. By default the signal
starts by a low level.
waveforms can be used to generate non overlapped waveforms. This property is defined in
the CALG field of the PWM_CMRx register. The default mode is left aligned.
No overlap
(
------------------------------------------ -
2
2
CRPD
duty cycle
duty cycle
×
×
X
CPRD
1. See
MCK
MCK
×
MCK
×
CPRD
Period
DIVA
×
Figure 42-5 on page 811
DIVA
=
=
)
)
(
----------------------------------------------------------------------------------------------------------- -
(
----------------------------------------------------------------------------------------------------------------------------- -
or
period 1
(
period
)
(
---------------------------------------------- -
or
CRPD
(
----------------------------------------------------- -
2
×
MCK
×
CPRD
2
DIVAB
) 1
MCK
fchannel_x_clock
AT91SAM9R64/RL64 Preliminary
×
period
(
period
)
DIVB
fchannel_x_clock
for a detailed description of center aligned waveforms.
)
2
)
×
CDTY
×
CDTY
)
) )
809

Related parts for AT91SAM9R64-CU-999