PIC18F87K90-I/PTRSL Microchip Technology, PIC18F87K90-I/PTRSL Datasheet - Page 416

no-image

PIC18F87K90-I/PTRSL

Manufacturer Part Number
PIC18F87K90-I/PTRSL
Description
MCU PIC 128K FLASH XLP 80TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F87K90-I/PTRSL

Core Size
8-Bit
Program Memory Size
128KB (64K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Controller Family/series
PIC18
Eeprom Memory Size
1024Byte
Ram Memory Size
4096Byte
Cpu Speed
16MIPS
No. Of Timers
11
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
I2C, SPI
Maximum Clock Frequency
64 MHz
Number Of Timers
11
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 24 Channel
A/d Bit Size
12 bit
A/d Channels Available
24
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F87K90-I/PTRSL
Manufacturer:
Maxim
Quantity:
89
Part Number:
PIC18F87K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
27.5
There are two ways to measure capacitance with the
CTMU. The absolute method measures the actual
capacitance value. The relative method only measures
for any change in the capacitance.
27.5.1
For absolute capacitance measurements, both the
current and capacitance calibration steps found in
Section 27.4 “Calibrating the CTMU Module” should
be followed.
To perform these measurements:
1.
2.
3.
4.
5.
6.
7.
8.
DS39957B-page 416
Initialize the A/D Converter.
Initialize the CTMU.
Set EDG1STAT.
Wait for a fixed delay, T .
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the total capacitance, C
where:
• I is known from the current source
• T is a fixed delay
• V is measured by performing an A/D
Subtract the stray and A/D capacitance
( C
Calibration” ) from C
measured capacitance.
measurement step ( Section 27.4.1 “Current
Source Calibration” )
conversion
OFFSET
Measuring Capacitance with the
CTMU
ABSOLUTE CAPACITANCE
MEASUREMENT
from Section 27.4.2 “Capacitance
TOTAL
to determine the
TOTAL
= (I * T)/V ,
Preliminary
measurements. When detecting a valid press of a
27.5.2
Not all applications require precise capacitance
capacitance-based switch, only a relative change of
capacitance needs to be detected.
In such an application, when the switch is open (or not
touched), the total capacitance is the capacitance of the
combination of the board traces, the A/D Converter and
other elements. A larger voltage will be measured by the
A/D Converter. When the switch is closed (or touched),
the total capacitance is larger due to the addition of the
capacitance of the human body to the above listed
capacitances and a smaller voltage will be measured by
the A/D Converter.
To detect capacitance changes simply:
1.
2.
3.
4.
5.
The voltage measured by performing the A/D conver-
sion is an indication of the relative capacitance. In this
case, no calibration of the current source or circuit
capacitance measurement is needed. (For a sample
software routine for a capacitive touch switch, see
Example 27-4.)
Initialize the A/D Converter and the CTMU.
Set EDG1STAT.
Wait for a fixed delay.
Clear EDG1STAT.
Perform an A/D conversion.
RELATIVE CHARGE
MEASUREMENT
 2010 Microchip Technology Inc.

Related parts for PIC18F87K90-I/PTRSL