PIC18F87K90-I/PTRSL Microchip Technology, PIC18F87K90-I/PTRSL Datasheet - Page 306

no-image

PIC18F87K90-I/PTRSL

Manufacturer Part Number
PIC18F87K90-I/PTRSL
Description
MCU PIC 128K FLASH XLP 80TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F87K90-I/PTRSL

Core Size
8-Bit
Program Memory Size
128KB (64K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Controller Family/series
PIC18
Eeprom Memory Size
1024Byte
Ram Memory Size
4096Byte
Cpu Speed
16MIPS
No. Of Timers
11
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
I2C, SPI
Maximum Clock Frequency
64 MHz
Number Of Timers
11
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 24 Channel
A/d Bit Size
12 bit
A/d Channels Available
24
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F87K90-I/PTRSL
Manufacturer:
Maxim
Quantity:
89
Part Number:
PIC18F87K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
21.3.6
The master can initiate the data transfer at any time
because it controls the SCKx. The master determines
when the slave (Processor 1, Figure 21-2) is to
broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPxBUF register is written to. If the SPI
is only going to receive, the SDOx output could be dis-
abled (programmed as an input). The SSPxSR register
will continue to shift in the signal present on the SDIx
pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPxBUF register as
if a normal received byte (interrupts and status bits
appropriately set). This could be useful in receiver
applications as a “Line Activity Monitor” mode.
The clock polarity is selected by appropriately
programming the CKP bit (SSPxCON1<4>). This, then,
would give waveforms for SPI communication as
FIGURE 21-3:
DS39957B-page 306
Write to
SSPxBUF
SCKx
(CKP = 0
CKE = 0)
SCKx
(CKP = 1
CKE = 0)
SCKx
(CKP = 0
CKE = 1)
SCKx
(CKP = 1
CKE = 1)
SDOx
(CKE = 0)
SDOx
(CKE = 1)
SDIx
(SMP = 0)
Input
Sample
(SMP = 0)
SDIx
(SMP = 1)
Input
Sample
(SMP = 1)
SSPxIF
SSPxSR to
SSPxBUF
MASTER MODE
SPI MODE WAVEFORM (MASTER MODE)
bit 7
bit 7
bit 7
bit 7
bit 6
bit 6
bit 5
bit 5
Preliminary
bit 4
bit 4
bit 3
bit 3
shown in Figure 21-3, Figure 21-5 and Figure 21-6,
where the MSB is transmitted first. In Master mode, the
SPI clock rate (bit rate) is user-programmable to be one
of the following:
• F
• F
• F
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 21-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDOx data is valid before
there is a clock edge on SCKx. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPxBUF is loaded with the received
data is shown.
OSC
OSC
OSC
/4 (or T
/16 (or 4 • T
/64 (or 16 • T
bit 2
bit 2
CY
)
bit 1
bit 1
CY
CY
)
)
 2010 Microchip Technology Inc.
bit 0
bit 0
bit 0
bit 0
Next Q4 Cycle
after Q2
4 Clock
Modes

Related parts for PIC18F87K90-I/PTRSL