AT91SAM9R64-CU Atmel, AT91SAM9R64-CU Datasheet - Page 624

MCU ARM9 64K SRAM 144-LFBGA

AT91SAM9R64-CU

Manufacturer Part Number
AT91SAM9R64-CU
Description
MCU ARM9 64K SRAM 144-LFBGA
Manufacturer
Atmel
Series
AT91SAMr
Datasheets

Specifications of AT91SAM9R64-CU

Core Processor
ARM9
Core Size
16/32-Bit
Speed
240MHz
Connectivity
EBI/EMI, I²C, MMC, SPI, SSC, UART/USART, USB
Peripherals
AC'97, POR, PWM, WDT
Number Of I /o
49
Program Memory Size
32KB (32K x 8)
Program Memory Type
ROM
Ram Size
72K x 8
Voltage - Supply (vcc/vdd)
1.08 V ~ 1.32 V
Data Converters
A/D 3x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LFBGA
Processor Series
AT91SAMx
Core
ARM926EJ-S
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
2-Wire, SPI, SSC, USART
Maximum Clock Frequency
240 MHz
Number Of Programmable I/os
118
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM9RL-EK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 3 Channel
Controller Family/series
AT91SAM9xxx
No. Of I/o's
49
Ram Memory Size
64KB
Cpu Speed
240MHz
No. Of Timers
3
Rohs Compliant
Yes
Package
144LFBGA
Device Core
ARM926EJ-S
Family Name
91S
Maximum Speed
240 MHz
Operating Supply Voltage
1.8|3.3 V
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM9R64-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM9R64-CU
Manufacturer:
ATMEL
Quantity:
93
Part Number:
AT91SAM9R64-CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM9R64-CU-999
Manufacturer:
Atmel
Quantity:
10 000
38.7.3
624
AT91SAM9R64/RL64 Preliminary
Read Operation
Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions
are defined (the host can use either one at any time):
The following flowchart shows how to read a single block with or without use of PDC facilities. In
this example (see
the user can configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end
of read.
• Open-ended/Infinite Multiple block read (or write):
• Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):
The number of blocks for the read (or write) multiple block operation is not defined. The card
continuously transfers (or programs) data blocks until a stop transmission command is
received.
The card transfers (or programs) the requested number of data blocks and terminate the
transaction. The stop command is not required at the end of this type of multiple block read
(or write), unless terminated with an error. In order to start a multiple block read (or write)
with pre-defined block count, the host must correctly program the MCI Block Register
(MCI_BLKR). Otherwise the card starts an open-ended multiple block read. The BCNT field
of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks). Pro-
gramming the value 0 in the BCNT field corresponds to an infinite block transfer.
Figure
38-10), a polling method is used to wait for the end of read. Similarly,
6289C–ATARM–28-May-09

Related parts for AT91SAM9R64-CU