ATAVRDISPLAYX Atmel, ATAVRDISPLAYX Datasheet - Page 229

no-image

ATAVRDISPLAYX

Manufacturer Part Number
ATAVRDISPLAYX
Description
KIT EVAL XMEGA DISPLAY
Manufacturer
Atmel
Datasheets

Specifications of ATAVRDISPLAYX

Main Purpose
*
Embedded
*
Utilized Ic / Part
*
Primary Attributes
*
Secondary Attributes
*
Silicon Manufacturer
Atmel
Silicon Family Name
ATxmega
Kit Contents
Board
Features
Temperature Sensor, Mono Speaker Via Audio Amplifier
Svhc
No SVHC (15-Dec-2010)
Core Architecture
AVR
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATAVRDISPLAYX
Manufacturer:
Atmel
Quantity:
135
20. SPI – Serial Peripheral Interface
20.1
20.2
8077H–AVR–12/09
Features
Overview
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using
three or four pins. It allows fast communication between an XMEGA device and peripheral
devices or between several AVR devices. The SPI supports full duplex communication.
A device connected to the bus must act as a master or slave.The master initiates and controls all
data transactions. The interconnection between Master and Slave CPUs with SPI is shown in
Figure 20-1 on page
ator. The SPI Master initiates the communication cycle when pulling low the Slave Select (SS)
pin of the desired Slave. Master and Slave prepare the data to be sent in their respective Shift
Registers, and the Master generates the required clock pulses on the SCK line to interchange
data. Data is always shifted from Master to Slave on the Master Out - Slave In (MOSI) line, and
from Slave to Master on the Master In - Slave Out (MISO) line. After each data packet, the Mas-
ter can synchronize the Slave by pulling high the SS line.
Figure 20-1. SPI Master-slave Interconnection
The XMEGA SPI module is single buffered in the transmit direction and double buffered in the
receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Reg-
ister before the entire shift cycle is completed. When receiving data, a received character must
be read from the Data register before the next character has been completely shifted in. Other-
wise, the first byte is lost.
Full-duplex, Three-wire Synchronous Data Transfer
Master or Slave Operation
LSB First or MSB First Data Transfer
Eight Programmable Bit Rates
End of Transmission Interrupt Flag
Write Collision Flag Protection
Wake-up from Idle Mode
Double Speed (CK/2) Master SPI Mode
229. The system consists of two shift Registers, and a Master clock gener-
XMEGA A
SHIFT
ENABLE
229

Related parts for ATAVRDISPLAYX