LPC47M172 SMSC Corporation, LPC47M172 Datasheet - Page 53

no-image

LPC47M172

Manufacturer Part Number
LPC47M172
Description
ADVANCED I/O CONTROLLER WITH MOTHERBOARD GLUE LOGIC
Manufacturer
SMSC Corporation
Datasheet
6.7
6.7.1
6.7.2
SMSC/Non-SMSC Register Sets (Rev. 02-27-04)
Controller Phases
For simplicity, command handling in the FDC can be divided into three phases: Command, Execution, and
Result. Each phase is described in the following sections.
Command Phase
After a reset, the FDC enters the command phase and is ready to accept a command from the host. For
each of the commands, a defined set of command code bytes and parameter bytes has to be written to the
FDC before the command phase is complete. (Please refer to section 6.10 Command Set/Descriptions).
These bytes of data must be transferred in the order prescribed.
Before writing to the FDC, the host must examine the RQM and DIO bits of the Main Status Register.
RQM and DIO must be equal to “1” and “0” respectively before command bytes may be written. RQM is
set false by the FDC after each write cycle until the received byte is processed. The FDC asserts RQM
again to request each parameter byte of the command unless an illegal command condition is detected.
After the last parameter byte is received, RQM remains “0” and the FDC automatically enters the next
phase as defined by the command definition.
The FIFO is disabled during the command phase to provide for the proper handling of the “Invalid
Command” condition.
Execution Phase
All data transfers to or from the FDC occur during the execution phase, which can proceed in DMA mode
as indicated in the Specify command.
After a reset, the FIFO is disabled. Each data byte is transferred by a read/write or DMA cycle depending
on the DMA mode. The Configure command can enable the FIFO and set the FIFO threshold value.
The following paragraphs detail the operation of the FIFO flow control. In these descriptions, <threshold>
is defined as the number of bytes available to the FDC when service is requested from the host and
ranges from 1 to 16. The parameter FIFOTHR, which the user programs, is one less and ranges from 0 to
15.
A low threshold value (i.e. 2) results in longer periods of time between service requests, but requires faster
servicing of the request for both read and write cases. The host reads (writes) from (to) the FIFO until
empty (full), then the transfer request goes inactive. The host must be very responsive to the service
request. This is the desired case for use with a “fast” system.
A high value of threshold (i.e. 12) is used with a “sluggish” system by affording a long latency period after a
service request, but results in more frequent service requests.
Non-DMA Mode - Transfers from the FIFO to the Host
This part does not support non-DMA mode.
Non-DMA Mode - Transfers from the Host to the FIFO
This part does not support non-DMA mode.
DATASHEET
Page 53
Advanced I/O Controller with Motherboard GLUE Logic
SMSC LPC47M172
Datasheet

Related parts for LPC47M172