PIC16F767-E/ML Microchip Technology, PIC16F767-E/ML Datasheet - Page 142

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LLCC,28PIN,PLASTIC

PIC16F767-E/ML

Manufacturer Part Number
PIC16F767-E/ML
Description
IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LLCC,28PIN,PLASTIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F767-E/ML

Rohs Compliant
YES
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
25
Program Memory Size
14KB (8K x 14)
Program Memory Type
FLASH
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
PIC16F7X7
11.2.2
The receiver block diagram is shown in Figure 11-4.
The data is received on the RC7/RX/DT pin and drives
the data recovery block. The data recovery block is
actually a high-speed shifter, operating at x16 times the
baud rate; whereas, the main receive serial shifter
operates at the bit rate or at F
Once Asynchronous mode is selected, reception is
enabled by setting bit, CREN (RCSTA<4>).
The heart of the receiver is the Receive (Serial) Shift
Register (RSR). After sampling the Stop bit, the
received data in the RSR is transferred to the RCREG
register (if it is empty). If the transfer is complete, flag
bit, RCIF (PIR1<5>), is set. The actual interrupt can be
enabled/disabled by setting/clearing enable bit, RCIE
(PIE1<5>). Flag bit RCIF is a read-only bit which is
cleared by the hardware. It is cleared when the RCREG
register has been read and is empty. The RCREG is a
double-buffered register (i.e., it is a two-deep FIFO). It
FIGURE 11-4:
FIGURE 11-5:
DS30498C-page 140
Note:
RX (pin)
Rcv Shift
Reg
Rcv Buffer Reg
Read Rcv
Buffer Reg
RCREG
RCIF
(Interrupt Flag)
OERR bit
CREN
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,
causing the OERR (Overrun Error) bit to be set.
AUSART ASYNCHRONOUS
RECEIVER
RC7/RX/DT
F
OSC
Baud Rate Generator
Start
x64 Baud Rate CLK
bit
AUSART RECEIVE BLOCK DIAGRAM
ASYNCHRONOUS RECEPTION
and Control
bit 0
SPBRG
Pin Buffer
SPEN
OSC
bit 1
.
bit 7/8
Recovery
Interrupt
Data
Stop
or
bit
64
16
Word 1
RCREG
CREN
Start
bit
bit 0
is possible for two bytes of data to be received and
transferred to the RCREG FIFO and a third byte to
begin shifting to the RSR register. On the detection of
the Stop bit of the third byte, if the RCREG register is
still full, the Overrun Error bit, OERR (RCSTA<1>), will
be set. The word in the RSR will be lost. The RCREG
register can be read twice to retrieve the two bytes in
the FIFO. Overrun bit, OERR, has to be cleared in soft-
ware. This is done by resetting the receive logic (CREN
is cleared and then set). If bit OERR is set, transfers
from the RSR register to the RCREG register are inhib-
ited and no further data will be received. It is, therefore,
essential to clear error bit OERR if it is set. Framing
Error bit, FERR (RCSTA<2>), is set if a Stop bit is
detected as clear. Bit FERR and the 9th receive bit are
buffered the same way as the receive data. Reading
the RCREG will load bits RX9D and FERR with new
values; therefore, it is essential for the user to read the
RCSTA register before reading the RCREG register in
order not to lose the old FERR and RX9D information.
RCIF
RCIE
RX9
MSb
Stop
RX9D
bit 7/8
Word 2
RCREG
(8) 7
OERR
RSR Register
Stop
bit
RCREG Register
Start
bit
 2004 Microchip Technology Inc.
8
Data Bus
1
FERR
0
bit 7/8
Start
FIFO
LSb
Stop
bit

Related parts for PIC16F767-E/ML