ATUC128L4U Atmel Corporation, ATUC128L4U Datasheet - Page 214

no-image

ATUC128L4U

Manufacturer Part Number
ATUC128L4U
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATUC128L4U

Flash (kbytes)
128 Kbytes
Pin Count
48
Max. Operating Frequency
50 MHz
Cpu
32-bit AVR
# Of Touch Channels
17
Hardware Qtouch Acquisition
Yes
Max I/o Pins
36
Ext Interrupts
36
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
4
Lin
4
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
460
Analog Comparators
8
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.62 to 3.6
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
6
Output Compare Channels
18
Input Capture Channels
12
Pwm Channels
35
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATUC128L4U-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-AUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-U
Manufacturer:
ATMEL
Quantity:
3 006
13.6.3.3
13.6.3.4
13.6.3.5
32142A–12/2011
Waking from sleep modes
SleepWalking
Precautions when entering sleep mode
There are two types of wake-up sources from sleep mode, synchronous and asynchronous.
Synchronous wake-up sources are all non-masked interrupts. Asynchronous wake-up sources
are AST, WDT, external interrupts from EIC, external reset, external wake pin (WAKE_N), and
all asynchronous wake-ups enabled in the Asynchronous Wake Up Enable (AWEN) register. The
valid wake-up sources for each sleep mode are detailed in
In Shutdown the only wake-up sources are external reset, external wake-up pin or AST. See
Section 13.6.4.3 on page
Table 13-3.
Notes:
In all sleep modes where the PBx clocks are stopped, except for Shutdown mode, the device
can partially wake up if a PBx module asynchronously discovers that it needs its clock. Only the
requested clocks and clock sources needed will be started, all other clocks will remain masked
to zero. E.g. if the main clock source is OSC0, only OSC0 will be started even if other clock
sources were enabled in normal mode. Generic clocks can also be started in a similar way. The
state where only requested clocks are running is referred to as SleepWalking.
The time spent to start the requested clock is mostly limited by the startup time of the given clock
source. This allows PBx modules to handle incoming requests, while still keeping the power con-
sumption at a minimum.
When the device is SleepWalking any asynchronous wake-up can wake the device up at any
time without stopping the requested PBx clock.
All requests to start clocks can be masked by writing to the Peripheral Power Control Register
(PPCR), all requests are enabled at reset.
During SleepWalking the interrupt controller clock will be running. If an interrupt is pending when
entering SleepWalking, it will wake the whole device up.
Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This will prevent erratic behavior caused by
entering or exiting sleep modes. Please refer to the relevant module documentation for recom-
mended actions.
Index
0
1
2
3
4
5
6
(1)
1. The sleep mode index is used as argument for the sleep instruction.
2. Only PB modules operational, as HSB module clocks are stopped.
3. WDT only available if clocked from pre-enabled OSC32K.
Sleep Mode
Idle
Frozen
Standby
Stop
DeepStop
Static
Shutdown
Wake-up Sources
216.
Wake-up Sources
Synchronous, Asynchronous
Synchronous
Asynchronous
Asynchronous
Asynchronous
Asynchronous
External reset, External wake-up pin
(2)
(3)
, Asynchronous
ATUC64/128/256L3/4U
Table 13-3 on page
214.
214

Related parts for ATUC128L4U