ATmega8HVA Atmel Corporation, ATmega8HVA Datasheet - Page 95

no-image

ATmega8HVA

Manufacturer Part Number
ATmega8HVA
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8HVA

Flash (kbytes)
8 Kbytes
Pin Count
28
Max. Operating Frequency
4 MHz
Cpu
8-bit AVR
# Of Touch Channels
3
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
6
Adc Resolution (bits)
12
Adc Speed (ksps)
1.9
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
256
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-20 to 85
I/o Supply Class
1.8 to 9.0
Operating Voltage (vcc)
1.8 to 9.0
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes
8024A–AVR–04/08
The interconnection between Master and Slave CPUs with SPI is shown in
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.
When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.
Figure 18-2. SPI Master-slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed f
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to
nate Port Functions” on page
Table 18-1 on page
68.
96. For more details on automatic port overrides, refer to
ATmega8HVA/16HVA
Figure
SHIFT
ENABLE
18-2. The sys-
osc
”Alter-
/4.
95

Related parts for ATmega8HVA