EP1S10F484I6 Altera, EP1S10F484I6 Datasheet - Page 414

IC STRATIX FPGA 10K LE 484-FBGA

EP1S10F484I6

Manufacturer Part Number
EP1S10F484I6
Description
IC STRATIX FPGA 10K LE 484-FBGA
Manufacturer
Altera
Series
Stratix®r
Datasheets

Specifications of EP1S10F484I6

Number Of Logic Elements/cells
10570
Number Of Labs/clbs
1057
Total Ram Bits
920448
Number Of I /o
335
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Stratix
Number Of Logic Blocks/elements
10570
# I/os (max)
335
Frequency (max)
450.05MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
10570
Ram Bits
920448
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
484
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP1S10F484I6
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6
Manufacturer:
ALTERA
0
Part Number:
EP1S10F484I6
0
Part Number:
EP1S10F484I6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1S10F484I6N
Manufacturer:
XILINX
0
Part Number:
EP1S10F484I6N
Manufacturer:
ALTERA
0
DDR Memory Support Overview
3–18
Stratix Device Handbook, Volume 2
To generate the correct phase shift, you must provide a clock signal of the
same frequency as the DQS signal to the DQS phase-shift circuitry. Any
of the CLK[15..12]p clock pins can feed the phase circuitry on the top
of the device (I/O banks 3 and 4) and any of the CLK[7..4]p clock pins
can feed the phase circuitry on the bottom of the device (I/O banks 7
and 8). Both the top and bottom phase-shift circuits need unique clock
pins for the reference clock. You cannot use any internal clock sources to
feed the phase-shift circuitry, but you can route internal clock sources
off-chip and then back into one of the allowable clock input pins.
DLL
The DQS phase-shift circuitry uses a DLL to dynamically measure the
clock period needed by the DQS pin (see
phase-shift circuitry then uses the clock period to generate the correct
phase shift. The DLL in the Stratix and Stratix GX devices DQS phase-
shift circuitry can operate between 100 and 200 MHz. The phase-shift
circuitry needs a maximum of 256 clock cycles to calculate the correct
phase shift. Data sent during these clock cycles may not be properly
captured.
1
Note to
(1)
Table 3–4. Quartus II Reported Number on the DQS Path to the
IOE
Speed Grade
These are reported by Quartus II version 4.0. Check the latest version of the
Quartus II software for the most current information.
Note (1)
Table
-8
You can still use the DQS phase-shift circuitry for DDR SDRAM
interfaces that are less than 100 MHz. The DQS signal is shifted
by about 2.5 ns. This shifted DQS signal is not in the center of the
DQ signals, but it is shifted enough to capture the correct data in
this low-frequency application.
3–4:
DQ2IOE
1.293
Figure
DQS2IOE
1.635
3–9). The DQS
Altera Corporation
Unit
ns
June 2006

Related parts for EP1S10F484I6