ATMEga64L ATMEL Corporation, ATMEga64L Datasheet - Page 36

no-image

ATMEga64L

Manufacturer Part Number
ATMEga64L
Description
8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEga64L-16AU
Manufacturer:
ROHM
Quantity:
40 000
Part Number:
ATMEga64L-8AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AI
Manufacturer:
ALTERA
0
Part Number:
ATMEga64L-8AI
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEga64L-8AQ
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
4 000
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL
Quantity:
451
Part Number:
ATMEga64L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L-8MU
Quantity:
113
Part Number:
ATMEga64L-8MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEga64L8AJ
Manufacturer:
ATMEL
Quantity:
6 973
Asynchronous Timer Clock –
clk
ADC Clock – clk
Clock Sources
Default Clock Source
36
ASY
ATmega64(L)
ADC
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode.
The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.
The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.
Table 6. Device Clocking Options Select
Note:
The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 7. The frequency of the Watchdog Oscil-
lator is voltage dependent as shown in the “ATmega64 Typical Characteristics –
Preliminary Data” on page 341.
Table 7. Number of Watchdog Oscillator Cycles
The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source
setting is therefore the Internal RC Oscillator with longest startup time. This default set-
ting ensures that all users can make their desired clock source setting using an In-
System or Parallel Programmer.
Device Clocking Option
External Crystal/Ceramic Resonator
External Low-frequency Crystal
External RC Oscillator
Calibrated Internal RC Oscillator
External Clock
Typ Time-out (V
1. For all fuses “1” means unprogrammed while “0” means programmed.
4.1 ms
65 ms
CC
= 5.0V)
Typ Time-out (V
(1)
4.3 ms
69 ms
CC
= 3.0V)
Number of Cycles
64K (65,536)
4K (4,096)
1111 - 1010
1000 - 0101
0100 - 0001
CKSEL3..0
1001
0000
2490G–AVR–03/04

Related parts for ATMEga64L