DP83865DVH National Semiconductor, DP83865DVH Datasheet - Page 55

10/100/1000BASE-T TRANSCEIVER, SMD

DP83865DVH

Manufacturer Part Number
DP83865DVH
Description
10/100/1000BASE-T TRANSCEIVER, SMD
Manufacturer
National Semiconductor
Datasheets

Specifications of DP83865DVH

Data Rate
1000Mbps
No. Of Ports
1
Ethernet Type
IEEE 802.3u, IEEE 802.3z
Supply Current
430µA
Supply Voltage Range
2.375V To 2.625V, 3.135V To 3.465V
Operating Temperature Range
0°C To +70°C
Interface Type
GMII, MII, RGMII
Rohs Compliant
Yes
Leaded Process Compatible
No
Peak Reflow Compatible (260 C)
No
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DP83865DVH
Manufacturer:
Texas Instruments
Quantity:
10 000
Company:
Part Number:
DP83865DVH
Quantity:
3 500
Part Number:
DP83865DVH/NOPB
Manufacturer:
NXP
Quantity:
1 000
Part Number:
DP83865DVH/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
DP83865DVH/NOPB
Manufacturer:
NSC
Quantity:
8 000
Part Number:
DP83865DVH/NOPB
0
4.0 Functional Description
4.7.5 100BASE-T Code-group Encoding and Injection
The code-group encoder converts 4-bit (4B) nibble data
generated by the MAC into 5-bit (5B) code-groups for
transmission. This conversion is required to allow control
data to be combined with packet data code-groups. Refer
to Table 52 for 4B to 5B code-group mapping details.
The code-group encoder substitutes the first 8-bits of the
MAC preamble with a /J/K/ code-group pair (11000 10001)
upon transmission. The code-group encoder continues to
replace subsequent 4B preamble and data nibbles with
corresponding 5B code-groups. At the end of the transmit
packet, upon the deassertion of Transmit Enable signal
from the MAC, the code-group encoder injects the /T/R/
code-group pair (01101 00111) indicating the end of frame.
After the /T/R/ code-group pair, the code-group encoder
continuously injects IDLEs into the transmit data stream
until the next transmit packet is detected (reassertion of
Transmit Enable).
FROM PGM
LOOPBACK
100BASE-X
Figure 6. 10BASE-T/100BASE-TX Transmit Block Diagram
DIVIDER
TX_CLK
(Continued)
INJECTION LOGIC
TXD[3:0] / TX_ER
4B/5B ENCODER
BINARY-TO-MLT
100BASE-T
SCRAMBLER
NRZ-TO-NRZI
TO SERIAL
PARALLEL
AND
55
MUX/DAC/DRIVER
4.7.6 Parallel-to-Serial Converter
The 5-bit (5B) code-groups are then converted to a serial
data stream at 125 MHz.
4.7.7 Scrambler
The scrambler is required to control the radiated emissions
at the media connector and on the twisted pair cable (for
100BASE-TX applications). By scrambling the data, the
total energy launched onto the cable is randomly distrib-
uted over a wide frequency range. Without the scrambler,
energy levels at the PMD and on the cable could peak
beyond FCC limitations such as frequencies related to
repeating 5B sequences (e.g., continuous transmission of
IDLEs).
The scrambler is configured as a closed loop linear feed-
back shift register (LFSR) with an 11-bit polynomial. The
output of the closed loop LFSR is X-ORed with the serial
NRZ data from the serializer block. The result is a scram-
bled data stream with sufficient randomization to decrease
radiated emissions at certain frequencies by as much as 20
10, 100, 1000
MDI
TXD[3:0] / TX_ER
MANCHESTER
GENERATOR
LINK PULSE
10BASE-T
DECODER
NRZ TO
www.national.com

Related parts for DP83865DVH