MC68HC16Z1CEH16 Freescale Semiconductor, MC68HC16Z1CEH16 Datasheet - Page 216

IC MCU 16BIT 16MHZ 132-PQFP

MC68HC16Z1CEH16

Manufacturer Part Number
MC68HC16Z1CEH16
Description
IC MCU 16BIT 16MHZ 132-PQFP
Manufacturer
Freescale Semiconductor
Series
HC16r
Datasheets

Specifications of MC68HC16Z1CEH16

Core Processor
CPU16
Core Size
16-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
16
Program Memory Type
ROMless
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
132-QFP
Processor Series
HC16Z
Core
CPU16
Data Bus Width
16 bit
Controller Family/series
68HC16
No. Of I/o's
26
Ram Memory Size
1KB
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
QSPI, SCI
Rohs Compliant
Yes
Package
132PQFP
Family Name
HC16
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Number Of Programmable I/os
16
On-chip Adc
8-chx10-bit
Number Of Timers
11
Data Ram Size
1 KB
Interface Type
SCI, SPI, UART
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
1 085
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
5 548
Part Number:
MC68HC16Z1CEH16
Manufacturer:
FREESCALE
Quantity:
20 000
9.3.1 QSPI Registers
9.3.1.1 Control Registers
9-6
The serial transfer length is programmable from eight to sixteen bits, inclusive. An in-
ter-transfer delay of 17 to 8192 system clocks can be specified (default is 17 system
clocks).
A dedicated 80-byte RAM is used to store received data, data to be transmitted, and
a queue of commands. The CPU16 can access these locations directly.
The command queue allows the QSPI to perform up to 16 serial transfers without
CPU16 intervention. Each queue entry contains all the information needed by the
QSPI to independently complete one serial transfer.
A pointer identifies the queue location containing the data and command for the next
serial transfer. Normally, the pointer address is incremented after each serial transfer,
but the CPU16 can change the pointer value at any time. Support for multiple-tasks
can be provided by segmenting the queue.
The QSPI has four peripheral chip-select pins. The chip-select signals simplify inter-
facing by reducing CPU16 intervention. If the chip-select signals are externally decod-
ed, 16 independent select signals can be generated.
Wrap-around mode allows continuous execution of queued commands. In wrap-
around mode, newly received data replaces previously received data in the receive
RAM. Wrap-around mode can simplify the interface with A/D converters by continu-
ously updating conversion values stored in the RAM.
Continuous transfer mode allows an uninterrupted bit stream of eight to 256 bits in
length to be transferred without CPU16 intervention. Longer transfers are possible, but
minimal intervention is required to prevent loss of data. A standard delay of 17 system
clocks is inserted between the transfer of each queue entry.
The programmer’s model for the QSPI consists of the QSM global and pin control reg-
isters, four QSPI control registers (SPCR[0:3]), the status register (SPSR), and the 80-
byte QSPI RAM. Registers and RAM can be read and written by the CPU16. Refer to
D.6 Queued Serial Module
Control registers contain parameters for configuring the QSPI and enabling various
modes of operation. The CPU16 has read and write access to all control registers. The
QSM has read access only to all bits except the SPE bit in SPCR1. Control registers
must be initialized before the QSPI is enabled to ensure proper operation. SPCR1
must be written last because it contains the QSPI enable bit (SPE).
Writing a new value to any control register except SPCR2 while the QSPI is enabled
disrupts operation. SPCR2 is buffered. New SPCR2 values become effective after
completion of the current serial transfer. Rewriting NEWQP in SPCR2 causes execu-
tion to restart at the designated location. Reads of SPCR2 return the current value of
the register, not of the buffer. Writing the same value into any control register except
SPCR2 while the QSPI is enabled has no effect on QSPI operation.
Freescale Semiconductor, Inc.
For More Information On This Product,
for register bit and field definitions.
QUEUED SERIAL MODULE
Go to: www.freescale.com
M68HC16 Z SERIES
USER’S MANUAL

Related parts for MC68HC16Z1CEH16