PIC18F2450-I/SO Microchip Technology, PIC18F2450-I/SO Datasheet - Page 74

IC PIC MCU FLASH 8KX16 28SOIC

PIC18F2450-I/SO

Manufacturer Part Number
PIC18F2450-I/SO
Description
IC PIC MCU FLASH 8KX16 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2450-I/SO

Program Memory Type
FLASH
Program Memory Size
16KB (8K x 16)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
23
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART/USB
Maximum Clock Frequency
48 MHZ
Number Of Programmable I/os
23
Number Of Timers
3
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DM163014, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
A/d Bit Size
10 bit
A/d Channels Available
10
Height
2.31 mm
Length
17.87 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2 V
Width
7.49 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164322 - MODULE SOCKET MPLAB PM3 28/44QFNDM163025 - PIC DEM FULL SPEED USB DEMO BRD
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2450-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
PIC18F2450/4450
5.6.3
The use of Indexed Literal Offset Addressing mode
effectively changes how the lower portion of Access
RAM (00h to 5Fh) is mapped. Rather than containing
just the contents of the bottom half of Bank 0, this mode
maps the contents from Bank 0 and a user-defined
“window” that can be located anywhere in the data
memory space. The value of FSR2 establishes the
lower boundary of the addresses mapped into the
window, while the upper boundary is defined by FSR2
plus 95 (5Fh). Addresses in the Access RAM above
5Fh are mapped as previously described (see
Section 5.3.3 “Access Bank”). An example of Access
Bank remapping in this addressing mode is shown in
Figure 5-9.
FIGURE 5-9:
DS39760C-page 72
Example Situation:
Locations in the region
from the FSR2 Pointer
(120h) to the pointer plus
05Fh (17Fh) are mapped
to
Access RAM (000h-05Fh).
Special Function Regis-
ters at F60h through FFFh
are
through FFh as usual.
Bank 0 addresses below
5Fh are not available in
this mode. They can still
be addressed by using the
BSR.
ADDWF f, d, a
FSR2H:FSR2L = 120h
the
mapped
MAPPING THE ACCESS BANK IN
INDEXED LITERAL OFFSET MODE
bottom
to
of
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL
OFFSET ADDRESSING
60h
the
FFFh
000h
100h
120h
17Fh
200h
F00h
F60h
Data Memory
Window
Bank 14
Bank 15
through
Bank 1
Bank 2
Bank 0
SFRs
Preliminary
Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1’) will
continue to use Direct Addressing as before. Any
indirect or indexed operation that explicitly uses any of
the indirect file operands (including FSR2) will continue
to operate as standard Indirect Addressing. Any
instruction that uses the Access Bank, but includes a
register address of greater than 05Fh, will use Direct
Addressing and the normal Access Bank map.
5.6.4
Although the Access Bank is remapped when the
extended instruction set is enabled, the operation of the
BSR remains unchanged. Direct Addressing, using the
BSR to select the data memory bank, operates in the
same manner as previously described.
BSR IN INDEXED LITERAL
OFFSET MODE
© 2007 Microchip Technology Inc.
Bank 1 “Window”
Access Bank
SFRs
00h
5Fh
60h
FFh

Related parts for PIC18F2450-I/SO