PIC18F2450-I/SO Microchip Technology, PIC18F2450-I/SO Datasheet - Page 46

IC PIC MCU FLASH 8KX16 28SOIC

PIC18F2450-I/SO

Manufacturer Part Number
PIC18F2450-I/SO
Description
IC PIC MCU FLASH 8KX16 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2450-I/SO

Program Memory Type
FLASH
Program Memory Size
16KB (8K x 16)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
23
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
768 B
Interface Type
EUSART/USB
Maximum Clock Frequency
48 MHZ
Number Of Programmable I/os
23
Number Of Timers
3
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DM163014, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
A/d Bit Size
10 bit
A/d Channels Available
10
Height
2.31 mm
Length
17.87 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2 V
Width
7.49 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164322 - MODULE SOCKET MPLAB PM3 28/44QFNDM163025 - PIC DEM FULL SPEED USB DEMO BRD
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2450-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
PIC18F2450/4450
4.4
PIC18F2450/4450 devices implement a BOR circuit
that provides the user with a number of configuration
and power-saving options. The BOR is controlled by
the
Configuration bits. There are a total of four BOR
configurations which are summarized in Table 4-1.
The BOR threshold is set by the BORV1:BORV0 bits. If
BOR is enabled (any values of BOREN1:BOREN0
except ‘00’), any drop of V
D005, Section 269 “DC Characteristics: Supply
Voltage”) for greater than T
Table 21-10) will reset the device. A Reset may or may
not occur if V
The chip will remain in Brown-out Reset until V
above V
If the Power-up Timer is enabled, it will be invoked after
V
Reset
(parameter 33, Table 21-10). If V
while the Power-up Timer is running, the chip will go
back into a Brown-out Reset and the Power-up Timer
will be initialized. Once V
Power-up Timer will execute the additional time delay.
BOR
independently configured. Enabling BOR Reset does
not automatically enable the PWRT.
4.4.1
When BOREN1:BOREN0 = 01, the BOR can be
enabled or disabled by the user in software. This is
done with the control bit, SBOREN (RCON<6>).
Setting SBOREN enables the BOR to function as
previously described. Clearing SBOREN disables the
BOR entirely. The SBOREN bit operates only in this
mode; otherwise, it is read as ‘0’.
TABLE 4-1:
DS39760C-page 44
DD
BOREN1
BOR Configuration
rises above V
0
0
1
1
BORV1:BORV0
and
BOR
for
Brown-out Reset (BOR)
SOFTWARE ENABLED BOR
.
DD
an
the
BOREN0
falls below V
BOR CONFIGURATIONS
additional
BOR
Power-on
0
1
0
1
; it then will keep the chip in
DD
DD
and
(RCON<6>)
Unavailable
Unavailable
Unavailable
BOR
SBOREN
below V
Available
Status of
rises above V
time
Timer
BOR
DD
for less than T
BOREN1:BOREN0
drops below V
(parameter 35,
delay,
BOR
(PWRT)
(parameter
BOR disabled; must be enabled by reprogramming the Configuration bits.
BOR enabled in software; operation controlled by SBOREN.
BOR enabled in hardware in Run and Idle modes, disabled during
Sleep mode.
BOR enabled in hardware; must be disabled by reprogramming the
Configuration bits.
BOR
DD
T
PWRT
, the
rises
BOR
BOR
Preliminary
are
.
Placing the BOR under software control gives the user
the additional flexibility of tailoring the application to its
environment without having to reprogram the device to
change BOR configuration. It also allows the user to
tailor device power consumption in software by eliminat-
ing the incremental current that the BOR consumes.
While the BOR current is typically very small, it may have
some impact in low-power applications.
4.4.2
When Brown-out Reset is enabled, the BOR bit always
resets to ‘0’ on any Brown-out Reset or Power-on
Reset event. This makes it difficult to determine if a
Brown-out Reset event has occurred just by reading
the state of BOR alone. A more reliable method is to
simultaneously check the state of both POR and BOR.
This assumes that the POR bit is reset to ‘1’ in software
immediately after any Power-on Reset event. IF BOR
is ‘0’ while POR is ‘1’, it can be reliably assumed that a
Brown-out Reset event has occurred.
4.4.3
When BOREN1:BOREN0 = 10, the BOR remains
under hardware control and operates as previously
described. Whenever the device enters Sleep mode,
however, the BOR is automatically disabled. When the
device returns to any other operating mode, BOR is
automatically re-enabled.
This mode allows for applications to recover from
brown-out situations, while actively executing code,
when the device requires BOR protection the most. At
the same time, it saves additional power in Sleep mode
by eliminating the small incremental BOR current.
Note:
BOR Operation
Even when BOR is under software control,
the BOR Reset voltage level is still set by
the BORV1:BORV0 Configuration bits. It
cannot be changed in software.
DETECTING BOR
DISABLING BOR IN SLEEP MODE
© 2007 Microchip Technology Inc.

Related parts for PIC18F2450-I/SO