SAM9G10 Atmel Corporation, SAM9G10 Datasheet - Page 271

no-image

SAM9G10

Manufacturer Part Number
SAM9G10
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G10

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
266 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
1
Uart
4
Ssc
3
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No/Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
32khz Rtc
Yes
Calibrated Rc Oscillator
No
6462B–ATARM–6-Sep-11
6462B–ATARM–6-Sep-11
Note:
• If a new value for CSS field corresponds to PLL Clock,
• If a new value for CSS field corresponds to Main Clock or Slow Clock,
6. Selection of Programmable clocks
The MDIV field is used to control the Master Clock divider. It is possible to choose between
different values (0, 1, 2). The Master Clock output is Processor Clock divided by 1, 2 or 4,
depending on the value programmed in MDIV. By default, MDIV is set to 0, which indicates
that the Processor Clock is equal to the Master Clock.
Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.
The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.
Code Example:
The Master Clock is main clock divided by 16.
The Processor Clock is the Master Clock.
Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.
Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. Depending on the system used,
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)
IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is
unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB) goes high and MCKRDY is set.
While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While
PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further
information, see
Section
27.9.2.
“Clock Switching Waveforms” on page
4
Programmable clocks can be enabled or dis-
275.
SAM9G10
SAM9G10
271
271

Related parts for SAM9G10