SAM9G10 Atmel Corporation, SAM9G10 Datasheet - Page 263

no-image

SAM9G10

Manufacturer Part Number
SAM9G10
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G10

Flash (kbytes)
0 Kbytes
Pin Count
217
Max. Operating Frequency
266 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
1
Uart
4
Ssc
3
Sd / Emmc
1
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.08 to 1.32
Fpu
No
Mpu / Mmu
No/Yes
Timers
3
Output Compare Channels
3
Input Capture Channels
3
32khz Rtc
Yes
Calibrated Rc Oscillator
No
26.3.4
26.3.5
26.4
6462B–ATARM–6-Sep-11
6462B–ATARM–6-Sep-11
Divider and PLL Block
Main Clock Frequency Counter
Main Oscillator Bypass
When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit
in PMC_SR is automatically cleared, indicating the main clock is off.
When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the main oscillator.
When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscil-
lator, the MOSCS bit in PMC_SR (Status Register) is cleared and the counter starts counting
down on the slow clock divided by 8 from the OSCOUNT value. Since the OSCOUNT value is
coded with 8 bits, the maximum startup time is about 62 ms.
When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Set-
ting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor.
The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency
connected to the Main Oscillator. Generally, this value is known by the system designer; how-
ever, it is useful for the boot program to configure the device with the correct clock speed,
independently of the application.
The Main Clock frequency counter starts incrementing at the Main Clock speed after the next ris-
ing edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS
bit is set. Then, at the 16th falling edge of Slow Clock, the MAINRDY bit in CKGR_MCFR (Main
Clock Frequency Register) is set and the counter stops counting. Its value can be read in the
MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of
Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be
determined.
The user can input a clock on the device instead of connecting a crystal. In this case, the user
has to provide the external clock signal on the XIN pin. The input characteristics of the XIN pin
under these conditions are given in the product electrical characteristics section. The program-
mer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to 0 in the Main OSC
register (CKGR_MOR) for the external clock to operate properly.
The PLL embeds an input divider to increase the accuracy of the resulting clock signals. How-
ever, the user must respect the PLL minimum input frequency when programming the divider.
Figure 26-4
shows the block diagram of the divider and PLL blocks.
SAM9G10
SAM9G10
263
263

Related parts for SAM9G10