AT32UC3B0512AU Atmel Corporation, AT32UC3B0512AU Datasheet - Page 64

no-image

AT32UC3B0512AU

Manufacturer Part Number
AT32UC3B0512AU
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3B0512AU

Flash (kbytes)
512 Kbytes
Pin Count
64
Max. Operating Frequency
60 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
44
Ext Interrupts
44
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
4
Twi (i2c)
1
Uart
3
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
16
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
96
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0-3.6 or (1.65-1.95+3.0-3.6)
Operating Voltage (vcc)
3.0-3.6 or (1.65-1.95+3.0-3.6)
Fpu
No
Mpu / Mmu
Yes / No
Timers
10
Output Compare Channels
16
Input Capture Channels
6
Pwm Channels
13
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3B0512AU-Z2U
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8.1.2
8.1.3
8.2
8.2.1
64
Event handling in AVR32B
AVR32
Supervisor calls
Debug requests
Exceptions and interrupt requests
The execution of the event handler routine then continues from the effective address calculated.
The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2 or INT3,
registers R8 to R12 and LR are also popped from the system stack. The restored Status Regis-
ter contains information allowing the core to resume operation in the previous execution mode.
This concludes the event handling.
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.
The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32A
microarchitecture, scall and rets uses the system stack to store the return address and the sta-
tus register.
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.
Debug mode is exited by executing the retd instruction. This returns to the previous context.
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:
3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM and
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.
ter file bank is selected. The address of the event handler, as shown in Table 8-1, is
loaded into the Program Counter.
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
32000D–04/2011

Related parts for AT32UC3B0512AU